基于双分支网络的表面肌电信号识别方法
王万良,潘杰,王铮,潘家宇

Recognition method of surface electromyographic signal based on two-branch network
Wanliang WANG,Jie PAN,Zheng WANG,Jiayu PAN
表 2 电极偏移情况下各方法的识别效果
Tab.2 Recognition effect of each method under electrode displacement
方法Pc/%Po/%
HCHORFWEWF
KNN+FE[30]28.21±0.009.23±0.0094.90±0.00100±0.00100±0.0066.67±0.00
SVM+FE[31]42.64±0.0018.97±0.0087.82±0.00100±0.00100±0.0070.49±0.00
CNN[8]90.72±6.9713.42±7.8223.21±10.1596.79±2.5896.75±5.2964.18±2.73
CNN+FE29.89±4.2433.91±16.2695.01±3.6098.90±1.3191.58±10.6670.87±2.74
CNN+FE+ETD85.56±4.4440.33±13.5075.20±8.0598.85±1.1886.18±5.2478.24±2.26
RESNET+FE[32]31.09±3.9435.17±10.9690.78±4.8898.92±1.2992.22±3.2670.78±2.66
Bi-GRU[33]84.10±8.195.41±5.0972.67±10.26100±0.0099.34±1.0972.04±2.35
LSTM[34]73.64±11.844.33±1.9971.13±18.33100±0.0099.40±1.0270.88±3.55
TRANSFORMER[35]80.64±5.8420.15±3.5366.17±8.6298.55±1.3889.14±2.1966.14±3.25
LCNN[36]93.13±2.9812.51±3.5381.03±6.5498.26±0.5291.08±4.9076.38±0.94
TDACAPS[14]97.59±2.6274.87±15.7195.18±4.4298.56±1.8255.39±16.8784.77±0.82
ETDTBN99.80±0.4166.36±6.9069.85±7.44100±0.0099.85±0.3686.95±1.64