基于双分支网络的表面肌电信号识别方法
|
王万良,潘杰,王铮,潘家宇
|
Recognition method of surface electromyographic signal based on two-branch network
|
Wanliang WANG,Jie PAN,Zheng WANG,Jiayu PAN
|
|
表 2 电极偏移情况下各方法的识别效果 |
Tab.2 Recognition effect of each method under electrode displacement |
|
方法 | Pc/% | Po/% | HC | HO | RF | WE | WF | KNN+FE[30] | 28.21±0.00 | 9.23±0.00 | 94.90±0.00 | 100±0.00 | 100±0.00 | 66.67±0.00 | SVM+FE[31] | 42.64±0.00 | 18.97±0.00 | 87.82±0.00 | 100±0.00 | 100±0.00 | 70.49±0.00 | CNN[8] | 90.72±6.97 | 13.42±7.82 | 23.21±10.15 | 96.79±2.58 | 96.75±5.29 | 64.18±2.73 | CNN+FE | 29.89±4.24 | 33.91±16.26 | 95.01±3.60 | 98.90±1.31 | 91.58±10.66 | 70.87±2.74 | CNN+FE+ETD | 85.56±4.44 | 40.33±13.50 | 75.20±8.05 | 98.85±1.18 | 86.18±5.24 | 78.24±2.26 | RESNET+FE[32] | 31.09±3.94 | 35.17±10.96 | 90.78±4.88 | 98.92±1.29 | 92.22±3.26 | 70.78±2.66 | Bi-GRU[33] | 84.10±8.19 | 5.41±5.09 | 72.67±10.26 | 100±0.00 | 99.34±1.09 | 72.04±2.35 | LSTM[34] | 73.64±11.84 | 4.33±1.99 | 71.13±18.33 | 100±0.00 | 99.40±1.02 | 70.88±3.55 | TRANSFORMER[35] | 80.64±5.84 | 20.15±3.53 | 66.17±8.62 | 98.55±1.38 | 89.14±2.19 | 66.14±3.25 | LCNN[36] | 93.13±2.98 | 12.51±3.53 | 81.03±6.54 | 98.26±0.52 | 91.08±4.90 | 76.38±0.94 | TDACAPS[14] | 97.59±2.62 | 74.87±15.71 | 95.18±4.42 | 98.56±1.82 | 55.39±16.87 | 84.77±0.82 | ETDTBN | 99.80±0.41 | 66.36±6.90 | 69.85±7.44 | 100±0.00 | 99.85±0.36 | 86.95±1.64 |
|
|
|