基于双向自举蒸馏的异质云-端医疗对话联邦
刘宇鹏,林明豪,张江,姚登举

Heterogeneous cloud-end medical dialogue federation based on bi-directional bootstrapping distillation
Yupeng LIU,Minghao LIN,Jiang ZHANG,Dengju YAO
表 1 不同联邦学习方法在2个数据集上的性能比较
Tab.1 Performance comparison of different federated leaning methods in two datasets
方法ReMeDiMedDG
BLEU-1BLEU-4ROGUE-1ROGUE-2Distinct-1Distinct-2BLEU-1BLEU-4ROGUE-1ROGUE-2Distinct-1Distinct-2
中心化训练27.866.5950.3632.250.728.5930.4714.2153.9735.730.8710.92
FedAvg18.374.8338.6422.450.505.3219.899.6239.7125.870.587.06
FedMD21.415.7941.9226.930.637.5423.7411.8443.7630.210.639.14
FedDF21.685.4640.4526.640.628.0624.2611.0343.8929.510.779.25
FedGen24.086.3842.6427.680.657.9226.1013.0546.1732.040.699.87
FedBiD25.016.3245.7628.190.688.3226.7513.1646.8331.630.789.98