基于双向自举蒸馏的异质云-端医疗对话联邦
|
刘宇鹏,林明豪,张江,姚登举
|
Heterogeneous cloud-end medical dialogue federation based on bi-directional bootstrapping distillation
|
Yupeng LIU,Minghao LIN,Jiang ZHANG,Dengju YAO
|
|
表 1 不同联邦学习方法在2个数据集上的性能比较 |
Tab.1 Performance comparison of different federated leaning methods in two datasets |
|
方法 | ReMeDi | | MedDG | BLEU-1 | BLEU-4 | ROGUE-1 | ROGUE-2 | Distinct-1 | Distinct-2 | | BLEU-1 | BLEU-4 | ROGUE-1 | ROGUE-2 | Distinct-1 | Distinct-2 | 中心化训练 | 27.86 | 6.59 | 50.36 | 32.25 | 0.72 | 8.59 | | 30.47 | 14.21 | 53.97 | 35.73 | 0.87 | 10.92 | FedAvg | 18.37 | 4.83 | 38.64 | 22.45 | 0.50 | 5.32 | | 19.89 | 9.62 | 39.71 | 25.87 | 0.58 | 7.06 | FedMD | 21.41 | 5.79 | 41.92 | 26.93 | 0.63 | 7.54 | | 23.74 | 11.84 | 43.76 | 30.21 | 0.63 | 9.14 | FedDF | 21.68 | 5.46 | 40.45 | 26.64 | 0.62 | 8.06 | | 24.26 | 11.03 | 43.89 | 29.51 | 0.77 | 9.25 | FedGen | 24.08 | 6.38 | 42.64 | 27.68 | 0.65 | 7.92 | | 26.10 | 13.05 | 46.17 | 32.04 | 0.69 | 9.87 | FedBiD | 25.01 | 6.32 | 45.76 | 28.19 | 0.68 | 8.32 | | 26.75 | 13.16 | 46.83 | 31.63 | 0.78 | 9.98 |
|
|
|