基于改进YOLOv5的枸杞虫害检测
|
杜丁健,高遵海,陈倬
|
Wolfberry pest detection based on improved YOLOv5
|
Dingjian DU,Zunhai GAO,Zhuo CHEN
|
|
表 2 模型改进前后的检测性能对比 |
Tab.2 Comparison of detection performance before and after model improvement |
|
模型 | AP/% | P/% | R/% | mAP50/% | M/MB | 尺蠖 | 大青叶蝉 | 负泥虫 | 蚜虫 | 毛田甲 | YOLOv5m | 99.0 | 99.4 | 87.6 | 78.6 | 99.4 | 95.8 | 88.8 | 92.8 | 42.2 | YOLOv5-P | 99.4 | 98.4 | 84.8 | 79.2 | 99.3 | 94.9 | 90.2 | 92.2 | 59.09 | YOLOv5-E | 99.1 | 98.1 | 84.3 | 72.7 | 98.4 | 94.6 | 86.8 | 90.5 | 56.2 | YOLOv5-N | 99.5 | 99.2 | 87.1 | 84.1 | 98.9 | 94.7 | 92.0 | 93.7 | 65.8 | YOLOv5-NC(加权融合) | 99.5 | 99.5 | 85.2 | 85.9 | 99.2 | 96.4 | 92.4 | 93.9 | 66.8 | YOLOv5-NC(自适应融合) | 99.4 | 99.5 | 87.3 | 87.1 | 99.3 | 97.0 | 92.1 | 94.5 | 66.8 | YOLOv5-NC(级联融合) | 99.4 | 99.5 | 85.4 | 87.2 | 98.2 | 96.1 | 91.3 | 94.0 | 66.9 | NCF-YOLO | 99.4 | 99.5 | 87.3 | 88.0 | 99.3 | 97.0 | 92.1 | 94.7 | 57.4 |
|
|
|