基于改进YOLOv5的枸杞虫害检测
杜丁健,高遵海,陈倬

Wolfberry pest detection based on improved YOLOv5
Dingjian DU,Zunhai GAO,Zhuo CHEN
表 2 模型改进前后的检测性能对比
Tab.2 Comparison of detection performance before and after model improvement
模型AP/%P/%R/%mAP50/%M/MB
尺蠖大青叶蝉负泥虫蚜虫毛田甲
YOLOv5m99.099.487.678.699.495.888.892.842.2
YOLOv5-P99.498.484.879.299.394.990.292.259.09
YOLOv5-E99.198.184.372.798.494.686.890.556.2
YOLOv5-N99.599.287.184.198.994.792.093.765.8
YOLOv5-NC(加权融合)99.599.585.285.999.296.492.493.966.8
YOLOv5-NC(自适应融合)99.499.587.387.199.397.092.194.566.8
YOLOv5-NC(级联融合)99.499.585.487.298.296.191.394.066.9
NCF-YOLO99.499.587.388.099.397.092.194.757.4