基于改进YOLOv5的锂电池极片缺陷检测方法
|
冉庆东,郑力新
|
Defect detection method of lithium battery electrode based on improved YOLOv5
|
Qingdong RAN,Lixin ZHENG
|
|
表 5 不同算法在锂电池极片数据集中的实验结果对比 |
Tab.5 Comparative experimental results of different algorithms on lithium battery electrode dataset |
|
方法 | P/106 | t/ ms | mAP50/ % | mAP50S/ % | mAP50L/ % | mAP50∶95/ % | Swin-Transformer[30] | 37. 03 | 56.8 | 46.4 | 37.1 | 57.7 | 22.3 | RetinaNet[5] | 36.31 | 44.6 | 53.4 | 46.9 | 61.1 | 25.4 | 文献[10] | 9.33 | 23.5 | 52.2 | 63.9 | 38.2 | 27.3 | YOLOv5s | 7. 04 | 22. 0 | 70.9 | 73.4 | 67.9 | 36.3 | 文献[11] | 7. 08 | 24.1 | 70.4 | 72. 0 | 68.5 | 37.4 | DDCNet-YOLOs (本研究) | 6.53 | 22.8 | 72.4 | 74.4 | 70. 0 | 45.2 | YOLOv5m | 20.89 | 27.6 | 73.4 | 72.6 | 74.3 | 42.6 | DDCNet-YOLO (本研究) | 22.76 | 26.5 | 77.1 | 75.6 | 79. 0 | 45.7 |
|
|
|