基于改进YOLOv5的锂电池极片缺陷检测方法
冉庆东,郑力新

Defect detection method of lithium battery electrode based on improved YOLOv5
Qingdong RAN,Lixin ZHENG
表 5 不同算法在锂电池极片数据集中的实验结果对比
Tab.5 Comparative experimental results of different algorithms on lithium battery electrode dataset
方法P/106t/
ms
mAP50/
%
mAP50S/
%
mAP50L/
%
mAP50∶95/
%
Swin-Transformer[30]37. 0356.846.437.157.722.3
RetinaNet[5]36.3144.653.446.961.125.4
文献[10]9.3323.552.263.938.227.3
YOLOv5s7. 0422. 070.973.467.936.3
文献[11]7. 0824.170.472. 068.537.4
DDCNet-YOLOs
(本研究)
6.5322.872.474.470. 045.2
YOLOv5m20.8927.673.472.674.342.6
DDCNet-YOLO
(本研究)
22.7626.577.175.679. 045.7