基于图像识别的弓网接触点检测方法
|
李凡,杨杰,冯志成,陈智超,付云骁
|
Pantograph-catenary contact point detection method based on image recognition
|
Fan LI,Jie YANG,Zhicheng FENG,Zhichao CHEN,Yunxiao FU
|
|
表 3 PMSE-BiSeNet和主流模型在弓网数据集中的结果对比 |
Tab.3 Comparison of results between PMSE-BiSeNet and mainstream models in proposed pantograph-catenary data set |
|
模型 | 基础网络结构 | mIOU/% | P/M | FLOPs/G | FPS/帧 | I9-12900(CPU) | JETSON TX2 | DeepLab v3[19] | ResNet50 | 67.47 | 41.81 | 171.09 | 2.68 | — | PSPNet[20] | ResNet50 | 80.31 | 46.71 | 184.74 | 2.69 | — | DenseAspp[21] | Densenet121 | 80.93 | 9.17 | 43.09 | 8.39 | — | EncNet[29] | ResNet50 | 80.40 | 33.60 | 147.08 | 2.30 | — | Fcn8s[14] | Vgg16 | 80.16 | 30.02 | 320.87 | 5.85 | — | BiSeNet v1[22] | ResNet18 | 85.45 | 12.80 | 13.03 | 23.05 | 6.68 | BiSeNet v2[23] | — | 87.52 | 3.34 | 12.35 | 33.28 | 10.50 | PMSE-BiSeNet | — | 87.50 | 4.57 | 6.73 | 49.80 | 12.60 |
|
|
|