基于TimeGAN数据增强的复杂过程故障分类方法
杨磊,何鹏举,丑幸幸

TimeGAN data augmentation-based fault classification method for complex processes
Lei YANG,Pengju HE,Xingxing CHOU
表 3 不同故障模式下的故障分类性能评价指标
Tab.3 Performance evaluation indexes of fault classification under different fault modes
提取子空间
所用数据
P/%R/%F1/%
故障1故障2故障6故障7故障12故障14故障1故障2故障6故障7故障12故障14故障1故障2故障6故障7故障12故障14
不平衡故障样本95.5676.3578.2685.3761.7073.2199.5079.5076.5084.6264.2571.3797.4977.8977.3785.0062.9572.28
数据增
强后故
障样本
WGAN-GP98.7099.48100.0099.0387.0498.2695.2596.50100.0089.7598.2598.8896.9597.97100.0094.1692.3198.57
SMOTE95.5698.7195.8599.0386.9398.5199.5095.7598.1289.7598.1299.1297.4997.2196.9794.1692.1998.82
TimeGAN99.12100.00100.0099.8792.33100.0098.8897.75100.0095.1399.3899.6299.0098.86100.0097.4495.7399.81
全部真实故障样本99.87100.00100.0099.8791.58100.0099.8897.88100.0098.2599.7598.1299.8798.93100.0099.0595.4999.05