基于TimeGAN数据增强的复杂过程故障分类方法
|
杨磊,何鹏举,丑幸幸
|
TimeGAN data augmentation-based fault classification method for complex processes
|
Lei YANG,Pengju HE,Xingxing CHOU
|
|
表 3 不同故障模式下的故障分类性能评价指标 |
Tab.3 Performance evaluation indexes of fault classification under different fault modes |
|
提取子空间 所用数据 | P/% | | R/% | | F1/% | 故障1 | 故障2 | 故障6 | 故障7 | 故障12 | 故障14 | | 故障1 | 故障2 | 故障6 | 故障7 | 故障12 | 故障14 | | 故障1 | 故障2 | 故障6 | 故障7 | 故障12 | 故障14 | 不平衡故障样本 | 95.56 | 76.35 | 78.26 | 85.37 | 61.70 | 73.21 | | 99.50 | 79.50 | 76.50 | 84.62 | 64.25 | 71.37 | | 97.49 | 77.89 | 77.37 | 85.00 | 62.95 | 72.28 | 数据增 强后故 障样本 | WGAN-GP | 98.70 | 99.48 | 100.00 | 99.03 | 87.04 | 98.26 | | 95.25 | 96.50 | 100.00 | 89.75 | 98.25 | 98.88 | | 96.95 | 97.97 | 100.00 | 94.16 | 92.31 | 98.57 | SMOTE | 95.56 | 98.71 | 95.85 | 99.03 | 86.93 | 98.51 | | 99.50 | 95.75 | 98.12 | 89.75 | 98.12 | 99.12 | | 97.49 | 97.21 | 96.97 | 94.16 | 92.19 | 98.82 | TimeGAN | 99.12 | 100.00 | 100.00 | 99.87 | 92.33 | 100.00 | | 98.88 | 97.75 | 100.00 | 95.13 | 99.38 | 99.62 | | 99.00 | 98.86 | 100.00 | 97.44 | 95.73 | 99.81 | 全部真实故障样本 | 99.87 | 100.00 | 100.00 | 99.87 | 91.58 | 100.00 | | 99.88 | 97.88 | 100.00 | 98.25 | 99.75 | 98.12 | | 99.87 | 98.93 | 100.00 | 99.05 | 95.49 | 99.05 |
|
|
|