基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别
刘欢,李云红,张蕾涛,郭越,苏雪平,朱耀麟,侯乐乐

Identification of apple leaf diseases based on MA-ConvNext network and stepwise relational knowledge distillation
Huan LIU,Yunhong LI,Leitao ZHANG,Yue GUO,Xueping SU,Yaolin ZHU,Lele HOU
表 2 DenseNet121网络结构
Tab.2 DenseNet121 network structure
网络层SISCSSO
Convolution&
pooling
224×2247×72112×112
112×1123×3 max pool256×56
Dense
Block 1
56×56$ \left[\begin{array}{l}1 \times 1 {\mathrm{c o n v}} \\3 \times 3 {\mathrm{c o n v}}\end{array}\right] \times 6 $156×56
Transition
Layer 1
56×561×1 conv156×56
56×562×2 average pool228×28
Dense
Block 2
28×28$ \left[\begin{array}{l}1 \times 1 {\mathrm{c o n v}} \\3 \times 3 {\mathrm{c o n v}}\end{array}\right] \times 12 $128×28
Transition
Layer 2
28×281×1 conv128×28
28×282×2 average pool214×14
Dense
Block 3
14×14$ \left[\begin{array}{l}1 \times 1 {\mathrm{c o n v}} \\3 \times 3 {\mathrm{c o n v}}\end{array}\right] \times 24 $114×14
Transition
Layer 3
14×141×1 conv114×14
14×142×2 average pool27×7
Dense
Block 4
7×7$ \left[\begin{array}{l}1 \times 1 {\mathrm{c o n v}} \\3 \times 3 {\mathrm{c o n v}}\end{array}\right] \times 16 $17×7
Classification Layer7×7Global average pool1×1
1×11000
Fully-connected
1000