基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别
|
刘欢,李云红,张蕾涛,郭越,苏雪平,朱耀麟,侯乐乐
|
Identification of apple leaf diseases based on MA-ConvNext network and stepwise relational knowledge distillation
|
Huan LIU,Yunhong LI,Leitao ZHANG,Yue GUO,Xueping SU,Yaolin ZHU,Lele HOU
|
|
表 2 DenseNet121网络结构 |
Tab.2 DenseNet121 network structure |
|
网络层 | SI | SC | S | SO | Convolution& pooling | 224×224 | 7×7 | 2 | 112×112 | 112×112 | 3×3 max pool | 2 | 56×56 | Dense Block 1 | 56×56 | $ \left[\begin{array}{l}1 \times 1 {\mathrm{c o n v}} \\3 \times 3 {\mathrm{c o n v}}\end{array}\right] \times 6 $ | 1 | 56×56 | Transition Layer 1 | 56×56 | 1×1 conv | 1 | 56×56 | 56×56 | 2×2 average pool | 2 | 28×28 | Dense Block 2 | 28×28 | $ \left[\begin{array}{l}1 \times 1 {\mathrm{c o n v}} \\3 \times 3 {\mathrm{c o n v}}\end{array}\right] \times 12 $ | 1 | 28×28 | Transition Layer 2 | 28×28 | 1×1 conv | 1 | 28×28 | 28×28 | 2×2 average pool | 2 | 14×14 | Dense Block 3 | 14×14 | $ \left[\begin{array}{l}1 \times 1 {\mathrm{c o n v}} \\3 \times 3 {\mathrm{c o n v}}\end{array}\right] \times 24 $ | 1 | 14×14 | Transition Layer 3 | 14×14 | 1×1 conv | 1 | 14×14 | 14×14 | 2×2 average pool | 2 | 7×7 | Dense Block 4 | 7×7 | $ \left[\begin{array}{l}1 \times 1 {\mathrm{c o n v}} \\3 \times 3 {\mathrm{c o n v}}\end{array}\right] \times 16 $ | 1 | 7×7 | Classification Layer | 7×7 | Global average pool | — | 1×1 | 1×1 | 1000 Fully-connected | — | 1000 |
|
|
|