源域数据增强与多兴趣细化迁移的跨域推荐模型
|
尹雅博,朱小飞,刘议丹
|
Cross-domain recommendation model based on source domain data augmentation and multi-interest refinement transfer
|
Yabo YIN,Xiaofei ZHU,Yidan LIU
|
|
表 2 模型在3个任务上的总体表现 |
Tab.2 Overall performance of model on three tasks |
|
任务 | 模型 | MAE | | RMSE | β=20% | β=50% | β=80% | | β=20% | β=50% | β=80% | 任务1 | TGT | 4.480 3 | 4.498 9 | 4.502 0 | | 5.158 0 | 5.173 6 | 5.189 1 | CMF | 1.520 9 | 1.689 3 | 2.418 6 | | 2.015 8 | 2.227 1 | 3.093 6 | DCDCSR | 1.491 8 | 1.814 4 | 2.719 4 | | 1.921 0 | 2.343 9 | 3.306 5 | SSCDR | 1.301 7 | 1.376 2 | 1.504 6 | | 1.657 9 | 1.747 7 | 1.922 9 | EMCDR | 1.235 0 | 1.327 7 | 1.500 8 | | 1.551 5 | 1.664 4 | 1.877 1 | PTUPCDR | 1.150 4 | 1.280 4 | 1.404 9 | | 1.519 5 | 1.638 0 | 1.823 4 | CDR-ART | 0.812 3 | 0.958 3 | 1.176 7 | | 1.160 0 | 1.337 2 | 1.545 7 | 任务2 | TGT | 4.183 1 | 4.228 8 | 4.212 3 | | 4.753 6 | 4.792 0 | 4.814 9 | CMF | 1.363 2 | 1.581 3 | 2.157 7 | | 1.791 8 | 2.088 6 | 2.677 7 | DCDCSR | 1.397 1 | 1.673 1 | 2.361 8 | | 1.734 6 | 2.055 1 | 2.770 2 | SSCDR | 1.239 0 | 1.213 7 | 1.317 2 | | 1.652 6 | 1.560 2 | 1.702 4 | EMCDR | 1.116 2 | 1.183 2 | 1.315 6 | | 1.412 0 | 1.498 1 | 1.643 3 | PTUPCDR | 0.997 0 | 1.089 4 | 1.199 9 | | 1.331 7 | 1.439 5 | 1.591 6 | CDR-ART | 0.874 4 | 0.922 7 | 0.997 2 | | 1.159 1 | 1.241 2 | 1.322 6 | 任务3 | TGT | 4.487 3 | 4.507 3 | 4.620 4 | | 5.167 2 | 5.172 7 | 5.230 8 | CMF | 1.828 4 | 2.128 2 | 3.013 0 | | 1.382 9 | 2.727 5 | 3.694 8 | DCDCSR | 1.841 1 | 2.173 6 | 3.140 5 | | 2.295 5 | 2.677 1 | 3.584 2 | SSCDR | 1.541 4 | 1.473 9 | 1.641 4 | | 1.928 3 | 1.844 1 | 2.140 3 | EMCDR | 1.352 4 | 1.473 2 | 1.719 1 | | 1.673 7 | 1.800 0 | 2.111 9 | PTUPCDR | 1.228 6 | 1.376 4 | 1.578 4 | | 1.608 5 | 1.744 7 | 2.051 0 | CDR-ART | 0.869 7 | 0.978 7 | 1.131 2 | | 1.244 3 | 1.324 0 | 1.515 5 |
|
|
|