源域数据增强与多兴趣细化迁移的跨域推荐模型
尹雅博,朱小飞,刘议丹

Cross-domain recommendation model based on source domain data augmentation and multi-interest refinement transfer
Yabo YIN,Xiaofei ZHU,Yidan LIU
表 2 模型在3个任务上的总体表现
Tab.2 Overall performance of model on three tasks
任务模型MAERMSE
β=20%β=50%β=80%β=20%β=50%β=80%
任务1TGT4.480 34.498 94.502 05.158 05.173 65.189 1
CMF1.520 91.689 32.418 62.015 82.227 13.093 6
DCDCSR1.491 81.814 42.719 41.921 02.343 93.306 5
SSCDR1.301 71.376 21.504 61.657 91.747 71.922 9
EMCDR1.235 01.327 71.500 81.551 51.664 41.877 1
PTUPCDR1.150 41.280 41.404 91.519 51.638 01.823 4
CDR-ART0.812 30.958 31.176 71.160 01.337 21.545 7
任务2TGT4.183 14.228 84.212 34.753 64.792 04.814 9
CMF1.363 21.581 32.157 71.791 82.088 62.677 7
DCDCSR1.397 11.673 12.361 81.734 62.055 12.770 2
SSCDR1.239 01.213 71.317 21.652 61.560 21.702 4
EMCDR1.116 21.183 21.315 61.412 01.498 11.643 3
PTUPCDR0.997 01.089 41.199 91.331 71.439 51.591 6
CDR-ART0.874 40.922 70.997 21.159 11.241 21.322 6
任务3TGT4.487 34.507 34.620 45.167 25.172 75.230 8
CMF1.828 42.128 23.013 01.382 92.727 53.694 8
DCDCSR1.841 12.173 63.140 52.295 52.677 13.584 2
SSCDR1.541 41.473 91.641 41.928 31.844 12.140 3
EMCDR1.352 41.473 21.719 11.673 71.800 02.111 9
PTUPCDR1.228 61.376 41.578 41.608 51.744 72.051 0
CDR-ART0.869 70.978 71.131 21.244 31.324 01.515 5