融合知识图谱的时空多图卷积交通流量预测
|
李劲业,李永强
|
Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs
|
Jinye LI,Yongqiang LI
|
|
表 1 不同交通流量预测模型对未来3个时段的交通状况预测结果 |
Tab.1 Prediction results of traffic conditions in next three time periods by different traffic flow prediction models |
|
模型 | t=10 min | | t=30 min | | t=60 min | RMSE | MAE | Acc | R2 | | RMSE | MAE | Acc | R2 | | RMSE | MAE | Acc | R2 | HA | 26.403 | 13.513 | 0.669 | 0.843 | | 27.741 | 14.166 | 0.652 | 0.826 | | 29.863 | 15.174 | 0.627 | 0.800 | LSTM | 11.874 | 6.709 | 0.833 | 0.966 | | 13.243 | 7.433 | 0.815 | 0.954 | | 15.218 | 8.454 | 0.796 | 0.935 | ST-GCN | 11.214 | 6.445 | 0.838 | 0.972 | | 12.338 | 7.129 | 0.833 | 0.964 | | 14.062 | 7.998 | 0.824 | 0.951 | TMGCN | 10.937 | 5.822 | 0.841 | 0.969 | | 11.897 | 6.284 | 0.836 | 0.965 | | 13.221 | 6.932 | 0.829 | 0.956 | KST-GCN | 10.625 | 5.673 | 0.849 | 0.971 | | 11.421 | 5.962 | 0.843 | 0.966 | | 12.637 | 6.371 | 0.834 | 0.959 | 本研究 | 10.013 | 5.226 | 0.872 | 0.978 | | 10.816 | 5.536 | 0.864 | 0.972 | | 11.853 | 5.953 | 0.853 | 0.963 |
|
|
|