基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
张晨,汪立新,孔祥玉

Temperature modeling and compensation method of hemispherical resonator gyro based on KPCA and grouped method of data handling neural network
Chen ZHANG,Lixin WANG,Xiangyu KONG
表 2 样本经核主成分分析筛选后的特征向量统计特性
Tab.2 Statistical characteristics of feature vectors for samples after kernel principal component analysis
特征最大值最小值平均值
${{\boldsymbol{X}}_1}$18.6932−95.12302.600 9×10−14
${{\boldsymbol{X}}_2}$9.5840−14.0542−7.9554×10−13
${{\boldsymbol{X}}_3}$6.1600−10.3414−1.988 5×10−13