基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
张晨,汪立新,孔祥玉

Temperature modeling and compensation method of hemispherical resonator gyro based on KPCA and grouped method of data handling neural network
Chen ZHANG,Lixin WANG,Xiangyu KONG
表 1 样本初选特征向量的统计特性
Tab.1 Statistical characteristics of primary feature vectors for samples
特征最大值最小值平均值
$ \sqrt f $69.934969.930969.9340
$ f $4890.88814890.33644890.7693
$ {f^2} $2.319 2×1072.391 5×1072.392 0×107
$ {\mathrm{d}}f $0.0042−0.00050.0008
$ \sqrt f \cdot {\mathrm{d}}f $0.2950−0.03290.0540
$ f \cdot {\mathrm{d}}f $20.6294−2.30083.7751
$ {f^2} \cdot {\mathrm{d}}f $1.008 9×105−1.125 3×1041.846 3×104
$ {({\mathrm{d}}f)^2} $1.7795×10−501.6851×10−6
$ \sqrt f \cdot {({\mathrm{d}}f)^2} $0.001201.1785×10−4
$ f \cdot {({\mathrm{d}}f)^2} $0.087000.0082
$ {f^2} \cdot {({\mathrm{d}}f)^2} $425.5719040.3035