基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
|
张晨,汪立新,孔祥玉
|
Temperature modeling and compensation method of hemispherical resonator gyro based on KPCA and grouped method of data handling neural network
|
Chen ZHANG,Lixin WANG,Xiangyu KONG
|
|
表 1 样本初选特征向量的统计特性 |
Tab.1 Statistical characteristics of primary feature vectors for samples |
|
特征 | 最大值 | 最小值 | 平均值 | $ \sqrt f $ | 69.9349 | 69.9309 | 69.9340 | $ f $ | 4890.8881 | 4890.3364 | 4890.7693 | $ {f^2} $ | 2.319 2×107 | 2.391 5×107 | 2.392 0×107 | $ {\mathrm{d}}f $ | 0.0042 | −0.0005 | 0.0008 | $ \sqrt f \cdot {\mathrm{d}}f $ | 0.2950 | −0.0329 | 0.0540 | $ f \cdot {\mathrm{d}}f $ | 20.6294 | −2.3008 | 3.7751 | $ {f^2} \cdot {\mathrm{d}}f $ | 1.008 9×105 | −1.125 3×104 | 1.846 3×104 | $ {({\mathrm{d}}f)^2} $ | 1.7795×10−5 | 0 | 1.6851×10−6 | $ \sqrt f \cdot {({\mathrm{d}}f)^2} $ | 0.0012 | 0 | 1.1785×10−4 | $ f \cdot {({\mathrm{d}}f)^2} $ | 0.0870 | 0 | 0.0082 | $ {f^2} \cdot {({\mathrm{d}}f)^2} $ | 425.5719 | 0 | 40.3035 |
|
|
|