基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断
韩康,战洪飞,余军合,王瑞

Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion
Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG
表 8 江南大学数据在不同噪声下8种模型的准确率
Tab.8 Accuracy of 8 models on Jiangnan University data under different noise
模 型A
SNR=4SNR=6SNR=8SNR=10SNR=12
MSCNN-LSTM[14]0.6710±0.04020.7157±0.02080.7939±0.01980.8509±0.02160.9107±0.0080
WDCNN[15]0.6396±0.01610.6969±0.01490.7223±0.02290.7703±0.02760.8193±0.0197
MSCNN[16]0.6785±0.01020.6985±0.00990.7497±0.00740.8032±0.00780.8164±0.0143
DC0.6527±0.02120.7164±0.01150.7654±0.01510.8191±0.01820.8544±0.0126
Resnet[17]0.7106±0.01550.7552±0.01160.8231±0.00910.8559±0.00220.9072±0.0084
DRSN-CS[18]0.7437±0.01130.7920±0.01380.8476±0.01550.8760±0.02870.9096±0.0250
MA1DCNN[19]0.6783±0.04740.7597±0.03350.8238±0.01660.8723±0.02700.9172±0.0280
DC-MAFFM0.7556±0.00420.8040±0.00630.8555±0.00980.9077±0.00470.9351±0.0048