基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断
|
韩康,战洪飞,余军合,王瑞
|
Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion
|
Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG
|
|
表 8 江南大学数据在不同噪声下8种模型的准确率 |
Tab.8 Accuracy of 8 models on Jiangnan University data under different noise |
|
模 型 | A | SNR=4 | SNR=6 | SNR=8 | SNR=10 | SNR=12 | MSCNN-LSTM[14] | 0.6710±0.0402 | 0.7157±0.0208 | 0.7939±0.0198 | 0.8509±0.0216 | 0.9107±0.0080 | WDCNN[15] | 0.6396±0.0161 | 0.6969±0.0149 | 0.7223±0.0229 | 0.7703±0.0276 | 0.8193±0.0197 | MSCNN[16] | 0.6785±0.0102 | 0.6985±0.0099 | 0.7497±0.0074 | 0.8032±0.0078 | 0.8164±0.0143 | DC | 0.6527±0.0212 | 0.7164±0.0115 | 0.7654±0.0151 | 0.8191±0.0182 | 0.8544±0.0126 | Resnet[17] | 0.7106±0.0155 | 0.7552±0.0116 | 0.8231±0.0091 | 0.8559±0.0022 | 0.9072±0.0084 | DRSN-CS[18] | 0.7437±0.0113 | 0.7920±0.0138 | 0.8476±0.0155 | 0.8760±0.0287 | 0.9096±0.0250 | MA1DCNN[19] | 0.6783±0.0474 | 0.7597±0.0335 | 0.8238±0.0166 | 0.8723±0.0270 | 0.9172±0.0280 | DC-MAFFM | 0.7556±0.0042 | 0.8040±0.0063 | 0.8555±0.0098 | 0.9077±0.0047 | 0.9351±0.0048 |
|
|
|