基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断
韩康,战洪飞,余军合,王瑞

Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion
Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG
表 3 12k驱动端轴承数据在不同噪声下8种模型的准确率
Tab.3 Accuracy rates of 8 models under different noises for 12k driving end bearing data
模 型A
SNR=4SNR=6SNR=8SNR=10SNR=12
MSCNN-LSTM[14]0.6646±0.01450.8195±0.01480.8892±0.03000.9236±0.03330.9706±0.0177
WDCNN[15]0.5968±0.01060.7578±0.03640.8665±0.01710.9499±0.00940.9701±0.0172
MSCNN[16]0.7605±0.03520.8549±0.04430.9195±0.02260.9493±0.02510.9774±0.0104
DC0.6346±0.02140.8108±0.01580.8900±0.01390.9410±0.01100.9754±0.0091
Resnet[17]0.7485±0.01110.8654±0.00960.9336±0.00510.9703±0.00640.9904±0.0017
DRSN-CS[18]0.7928±0.01510.8665±0.01930.9423±0.00190.9755±0.01070.9875±0.0059
MA1DCNN[19]0.8019±0.03740.8744±0.02290.9076±0.01400.9537±0.02320.9836±0.0122
DC-MAFFM0.8808±0.00090.9346±0.00730.9639±0.00910.9848±0.00650.9992±0.0010