基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断
|
韩康,战洪飞,余军合,王瑞
|
Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion
|
Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG
|
|
表 3 12k驱动端轴承数据在不同噪声下8种模型的准确率 |
Tab.3 Accuracy rates of 8 models under different noises for 12k driving end bearing data |
|
模 型 | A | SNR=4 | SNR=6 | SNR=8 | SNR=10 | SNR=12 | MSCNN-LSTM[14] | 0.6646±0.0145 | 0.8195±0.0148 | 0.8892±0.0300 | 0.9236±0.0333 | 0.9706±0.0177 | WDCNN[15] | 0.5968±0.0106 | 0.7578±0.0364 | 0.8665±0.0171 | 0.9499±0.0094 | 0.9701±0.0172 | MSCNN[16] | 0.7605±0.0352 | 0.8549±0.0443 | 0.9195±0.0226 | 0.9493±0.0251 | 0.9774±0.0104 | DC | 0.6346±0.0214 | 0.8108±0.0158 | 0.8900±0.0139 | 0.9410±0.0110 | 0.9754±0.0091 | Resnet[17] | 0.7485±0.0111 | 0.8654±0.0096 | 0.9336±0.0051 | 0.9703±0.0064 | 0.9904±0.0017 | DRSN-CS[18] | 0.7928±0.0151 | 0.8665±0.0193 | 0.9423±0.0019 | 0.9755±0.0107 | 0.9875±0.0059 | MA1DCNN[19] | 0.8019±0.0374 | 0.8744±0.0229 | 0.9076±0.0140 | 0.9537±0.0232 | 0.9836±0.0122 | DC-MAFFM | 0.8808±0.0009 | 0.9346±0.0073 | 0.9639±0.0091 | 0.9848±0.0065 | 0.9992±0.0010 |
|
|
|