基于深度学习的隧道衬砌多病害检测算法
|
宋娟,贺龙喜,龙会平
|
Deep learning-based algorithm for multi defect detection in tunnel lining
|
Juan SONG,Longxi HE,Huiping LONG
|
|
表 5 6种模型的实验精度结果对比表 |
Tab.5 Accuracy experimental result comparison of six models |
|
网络 | 裂缝 | | 渗漏水 | | 衬砌脱落 | F1/% | mAP/% | f1/% | AP/% | f1/% | AP/% | f1/% | AP/% | SSD | 69.43 | 69.97 | | 71.80 | 74.00 | | 44.31 | 42.98 | 61.85 | 62.32 | Faster RCNN | 64.92 | 71.54 | 70.57 | 72.21 | 44.72 | 46.08 | 60.07 | 63.28 | EfficientDet | 64.42 | 70.78 | 74.93 | 76.02 | 56.37 | 57.43 | 65.24 | 68.08 | YOLOv5 | 74.72 | 73.83 | 73.49 | 72.40 | 65.12 | 64.02 | 71.11 | 70.08 | YOLOv7 | 74.97 | 76.53 | 73.55 | 74.71 | 65.35 | 62.15 | 71.29 | 71.13 | TDD-YOLO | 80.47 | 82.28 | 79.59 | 80.58 | 71.74 | 69.71 | 77.43 | 77.52 |
|
|
|