基于边界点估计与稀疏卷积神经网络的三维点云语义分割
|
杨军,张琛
|
Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network
|
Jun YANG,Chen ZHANG
|
|
表 2 不同方法在SemanticKITTI数据集上的分割精度对比 |
Tab.2 Comparison of segmentation accuracy of different methods on SemanticKITTI dataset |
|
方法 | mIoU/% | IoU/% | road | side- walk | par- king | other-ground | buil- ding | car | truck | bicy- cle | motor- cycle | other-vehicle | vegeta- tion | trunk | terrain | per- son | bicy- clist | motor- cyclist | fence | pole | traffic-sign | PointNet [5] | 14.6 | 61.6 | 35.7 | 15.8 | 1.4 | 41.4 | 46.3 | 0.1 | 1.3 | 0.3 | 0.8 | 31.0 | 4.6 | 17.6 | 0.2 | 0.2 | 0.0 | 12.9 | 2.4 | 3.7 | SPG [30] | 17.4 | 45.0 | 28.5 | 1.6 | 0.6 | 64.3 | 49.3 | 0.1 | 0.2 | 0.2 | 0.8 | 48.9 | 27.2 | 24.6 | 0.3 | 2.7 | 0.1 | 20.8 | 15.9 | 0.8 | PointNet++ [6] | 20.1 | 72.0 | 41.8 | 18.7 | 5.6 | 62.3 | 53.7 | 0.9 | 1.9 | 0.2 | 0.2 | 46.5 | 13.8 | 30.0 | 0.9 | 1.0 | 0.0 | 16.9 | 6.0 | 8.9 | TangentConv [28] | 40.9 | 83.9 | 63.9 | 33.4 | 15.4 | 83.4 | 90.8 | 15.2 | 2.7 | 16.5 | 12.1 | 79.5 | 49.3 | 58.1 | 23.0 | 28.4 | 8.1 | 49.0 | 35.8 | 28.5 | SpSequenceNet [38] | 43.1 | 90.1 | 73.9 | 57.6 | 27.1 | 91.2 | 88.5 | 29.2 | 24.0 | 0.0 | 22.7 | 84.0 | 66.0 | 65.7 | 6.3 | 0.0 | 0.0 | 67.7 | 50.8 | 48.7 | HPGCNN [39] | 50.5 | 89.5 | 73.6 | 58.8 | 34.6 | 91.2 | 93.1 | 21.0 | 6.5 | 17.6 | 23.3 | 84.4 | 65.9 | 70.0 | 32.1 | 30.0 | 14.7 | 65.5 | 45.5 | 41.5 | RangeNet++ [40] | 52.2 | 91.8 | 75.2 | 65.0 | 27.8 | 87.4 | 91.4 | 25.7 | 25.7 | 34.4 | 23.0 | 80.5 | 55.1 | 64.6 | 38.3 | 38.8 | 4.8 | 58.6 | 47.9 | 55.9 | RandLA-Net [18] | 53.9 | 90.7 | 73.7 | 60.3 | 20.4 | 86.9 | 94.2 | 40.1 | 26.0 | 25.8 | 38.9 | 81.4 | 61.3 | 66.8 | 49.2 | 48.2 | 7.2 | 56.3 | 49.2 | 47.7 | PolarNet [41] | 54.3 | 90.8 | 74.4 | 61.7 | 21.7 | 90.0 | 93.8 | 22.9 | 40.3 | 30.1 | 28.5 | 84.0 | 65.5 | 67.8 | 43.2 | 40.2 | 5.6 | 61.3 | 51.8 | 57.5 | 3D-MiniNet [42] | 55.8 | 91.6 | 74.5 | 64.2 | 25.4 | 89.4 | 90.5 | 28.5 | 42.3 | 42.1 | 29.4 | 82.8 | 60.8 | 66.7 | 47.8 | 44.1 | 14.5 | 60.8 | 48.0 | 56.6 | SAFFGCNN [43] | 56.6 | 89.9 | 73.9 | 63.5 | 35.1 | 91.5 | 95.0 | 38.3 | 33.2 | 35.1 | 28.7 | 84.4 | 67.1 | 69.5 | 45.3 | 43.5 | 7.3 | 66.1 | 54.3 | 53.7 | KPConv [36] | 58.8 | 88.8 | 72.7 | 61.3 | 31.6 | 90.5 | 96.0 | 33.4 | 30.2 | 42.5 | 31.6 | 84.8 | 69.2 | 69.1 | 61.5 | 61.6 | 11.8 | 64.2 | 56.4 | 48.4 | BAAF-Net [35] | 59.9 | 90.9 | 74.4 | 62.2 | 23.6 | 89.8 | 95.4 | 48.7 | 31.8 | 35.5 | 46.7 | 82.7 | 63.4 | 67.9 | 49.5 | 55.7 | 53.0 | 60.8 | 53.7 | 52.0 | TORNADONet [44] | 61.1 | 90.8 | 75.3 | 65.3 | 27.5 | 89.6 | 93.1 | 43.1 | 53.0 | 44.4 | 39.4 | 84.1 | 64.3 | 69.6 | 61.6 | 56.7 | 20.2 | 62.9 | 55.0 | 64.2 | FusionNet [20] | 61.3 | 91.8 | 77.1 | 68.8 | 30.8 | 92.5 | 95.3 | 41.8 | 47.5 | 37.7 | 34.5 | 84.5 | 69.8 | 68.5 | 59.5 | 56.8 | 11.9 | 69.4 | 60.0 | 66.5 | 本研究方法 | 62.7 | 92.7 | 78.5 | 71.6 | 31.5 | 91.4 | 95.5 | 40.9 | 46.1 | 48.0 | 42.2 | 85.2 | 68.4 | 70.2 | 63.9 | 54.3 | 23.8 | 68.6 | 56.7 | 62.8 |
|
|
|