基于改进图卷积神经网络的航空行李特征感知
|
邢志伟,朱书杰,李彪
|
Airline baggage feature perception based on improved graph convolutional neural network
|
Zhiwei XING,Shujie ZHU,Biao LI
|
|
表 3 不同模型的分类精度对比 |
Tab.3 Comparision of classification accuracy for different models |
|
算法 | 方箱 | 硬箱 | 软箱 | 硬包 | 软包 | 异形 | mAcc/% | OA/% | t/s | PointNet | 86.92 | 86.14 | 87.47 | 80.76 | 85.33 | 89.45 | 86.01 | 89.67 | 124.5 | PointNet++ | 88.61 | 88.27 | 89.94 | 82.75 | 88.03 | 91.31 | 88.15 | 91.25 | 267.3 | DGCNN | 90.56 | 92.73 | 94.43 | 84.67 | 87.26 | 94.68 | 90.72 | 93.06 | 192.4 | PointVGG | 91.23 | 93.52 | 94.48 | 87.54 | 89.73 | 94.81 | 91.89 | 94.18 | 216.7 | GACP(本文方法) | 93.72 | 95.64 | 96.39 | 91.16 | 92.53 | 98.66 | 94.68 | 96.32 | 283.2 |
|
|
|