基于异质图卷积神经网络的论点对抽取模型
|
刘议丹,朱小飞,尹雅博
|
Heterogeneous graph convolutional neural network for argument pair extraction
|
Yidan LIU,Xiaofei ZHU,Yabo YIN
|
|
表 2 HGCN-APE在RR-passage和RR-submission-v2数据集上的性能对比 |
Tab.2 Comparison of performance of HGCN-APE on RR-passage and RR-submission-v2 dataset |
|
数据集 | 模型 | 论点预测 | | 句子对预测 | | 论点对预测 | P/% | R/% | F1/% | | P/% | R/% | F1/% | | P/% | R/% | F1/% | RR-submission-v2 | MT-H-LSTM-CRF | 70.74 | 69.46 | 70.09 | | 52.05 | 46.74 | 49.25 | | 27.24 | 26.00 | 26.61 | MLMC | 69.53 | 73.27 | 71.35 | | 60.01 | 46.82 | 52.60 | | 37.15 | 29.38 | 32.81 | MGF | 70.40 | 71.87 | 71.13 | | — | — | — | | 34.23 | 34.57 | 34.40 | MRC-APE-Bert | 73.36 | 68.35 | 70.77 | | — | — | — | | 42.26 | 34.06 | 37.72 | HGCN-APE | 71.86 | 71.80 | 71.83 | | 66.12 | 59.40 | 62.58 | | 42.70 | 36.05 | 39.09 | RR-passage | MT-H-LSTM-CRF | 71.85 | 71.01 | 71.43 | | 54.28 | 43.24 | 48.13 | | 30.08 | 29.55 | 29.81 | MLMC | 66.79 | 72.17 | 69.37 | | 62.49 | 42.33 | 50.53 | | 40.27 | 29.53 | 34.07 | MGF | 73.62 | 70.88 | 72.22 | | — | — | — | | 38.03 | 35.68 | 36.82 | MRC-APE-Bert | 66.81 | 69.84 | 68.29 | | — | — | — | | 34.70 | 35.53 | 35.51 | HGCN-APE | 72.50 | 71.61 | 72.05 | | 67.68 | 59.25 | 63.18 | | 45.76 | 38.32 | 41.71 |
|
|
|