基于异质图卷积神经网络的论点对抽取模型
刘议丹,朱小飞,尹雅博

Heterogeneous graph convolutional neural network for argument pair extraction
Yidan LIU,Xiaofei ZHU,Yabo YIN
表 2 HGCN-APE在RR-passage和RR-submission-v2数据集上的性能对比
Tab.2 Comparison of performance of HGCN-APE on RR-passage and RR-submission-v2 dataset
数据集模型论点预测句子对预测论点对预测
P/%R/%F1/%P/%R/%F1/%P/%R/%F1/%
RR-submission-v2MT-H-LSTM-CRF70.7469.4670.0952.0546.7449.2527.2426.0026.61
MLMC69.5373.2771.3560.0146.8252.6037.1529.3832.81
MGF70.4071.8771.1334.2334.5734.40
MRC-APE-Bert73.3668.3570.7742.2634.0637.72
HGCN-APE71.8671.8071.8366.1259.4062.5842.7036.0539.09
RR-passageMT-H-LSTM-CRF71.8571.0171.4354.2843.2448.1330.0829.5529.81
MLMC66.7972.1769.3762.4942.3350.5340.2729.5334.07
MGF73.6270.8872.2238.0335.6836.82
MRC-APE-Bert66.8169.8468.2934.7035.5335.51
HGCN-APE72.5071.6172.0567.6859.2563.1845.7638.3241.71