基于多依赖图和知识融合的方面级情感分析模型
|
何勇禧,韩虎,孔博
|
Aspect-based sentiment analysis model based on multi-dependency graph and knowledge fusion
|
Yongxi HE,Hu HAN,Bo KONG
|
|
表 3 不同模型在5个数据集上的分类准确率和宏观F1 分数对比 |
Tab.3 Comparison of classification accuracy and macro F1 score of different models in five datasets |
|
% | 类别 | 模型 | Twitter | | Laptop14 | | Restaurant14 | | Restaurant15 | | Restaurant16 | Acc | MF1 | | Acc | MF1 | | Acc | MF1 | | Acc | MF1 | | Acc | MF1 | GloVe | LSTM | 69.56 | 67.70 | | 69.28 | 63.09 | | 78.13 | 67.47 | | 77.37 | 55.17 | | 86.80 | 63.88 | IAN | 72.50 | 70.81 | | 72.05 | 67.38 | | 79.26 | 70.09 | | 78.54 | 52.65 | | 84.74 | 55.21 | ASGCN | 72.15 | 70.40 | | 75.55 | 71.05 | | 80.77 | 72.02 | | 79.89 | 61.89 | | 88.99 | 67.48 | kumaGCN | 72.45 | 70.77 | | 76.12 | 72.42 | | 81.43 | 73.64 | | 80.69 | 65.99 | | 89.39 | 73.19 | SKGCN | 71.97 | 70.22 | | 73.20 | 69.18 | | 80.36 | 70.43 | | 80.12 | 60.70 | | 85.17 | 68.08 | CDT | 72.87 | 71.40 | | 75.89 | 71.84 | | 81.46 | 73.59 | | 80.25 | 61.92 | | 86.65 | 70.18 | MI-GCN | 73.31 | 72.12 | | 76.59 | 72.44 | | 82.32 | 74.31 | | 80.81 | 64.21 | | 89.50 | 71.97 | DGAT | 73.99 | 72.53 | | 76.49 | 72.75 | | 82.68 | 75.53 | | — | — | | — | — | MDKGCN | 74.28 | 72.68 | | 78.06 | 74.61 | | 82.41 | 74.34 | | 81.92 | 66.85 | | 90.26 | 75.52 | BERT | BERT-BASE | 73.70 | 71.50 | | 77.74 | 73.30 | | 82.68 | 73.54 | | 81.34 | 63.57 | | 88.89 | 68.19 | SK-GCN-BERT | 75.00 | 73.01 | | 79.00 | 75.57 | | 83.48 | 75.19 | | 83.20 | 66.78 | | 87.19 | 72.02 | WGAT-BERT | 76.25 | 74.56 | | 80.49 | 77.21 | | 85.71 | 80.23 | | — | — | | — | — | SSEMGAT-BERT | 76.81 | 76.10 | | 80.06 | 76.78 | | 86.42 | 79.70 | | — | — | | — | — | MFSGC-BERT | 75.41 | 72.98 | | 78.53 | 74.91 | | 85.71 | 79.55 | | 83.58 | 68.37 | | 91.07 | 76.09 | MDKGCN-BERT | 76.30 | 75.31 | | 80.41 | 77.60 | | 86.70 | 80.93 | | 85.61 | 72.54 | | 91.07 | 76.70 |
|
|
|