基于生成对抗网络的文本两阶段生成高质量图像方法
|
曹寅,秦俊平,高彤,马千里,任家琪
|
Generative adversarial network based two-stage generation of high-quality images from text
|
Yin CAO,Junping QIN,Tong GAO,Qianli MA,Jiaqi REN
|
|
表 1 文本生成图像方法在2个数据集上的评价指标对比 |
Tab.1 Comparison of evaluation indexes of text-to-image generation methods in two datasets |
|
模型 | CUB | | COCO | IS | FID | | FID | StackGAN[6] | 3.70 | 35.51 | | 74.05 | StackGAN++[6] | 3.84 | — | | — | AttnGAN[2] | 4.36 | 24.37 | | 35.49 | MirrorGAN[8] | 4.56 | 18.34 | | 34.71 | textStyleGAN[28] | 4.78 | — | | — | DM-GAN[29] | 4.75 | 16.09 | | 32.64 | SD-GAN[30] | 4.67 | — | | — | DF-GAN[8] | 5.10 | 14.81 | | 19.32 | SSA-GAN[31] | 5.17 | 15.61 | | 19.37 | RAT-GAN[32] | 5.36 | 13.91 | | 14.60 | CogView2[33] | — | — | | 17.70 | KNN-Diffusion[16] | — | — | | 16.66 | DFA-GAN-第一阶段 | 4.53 | 16.07 | | 25.09 | DFA-GAN-第二阶段 | 5.34 | 10.96 | | 19.17 |
|
|
|