改进A*与ROA-DWA融合的机器人路径规划
刘宇庭,郭世杰,唐术锋,张学炜,李田田

Path planning based on fusion of improved A* and ROA-DWA for robot
Yuting LIU,Shijie GUO,Shufeng TANG,Xuewei ZHANG,Tiantian LI
表 1 全局路径规划的仿真数据
Tab.1 Simulation data of global path planning
地图尺寸算法L/mT/sNP$\Sigma \theta $/(°)
20×20传统A*算法29.7960.5281497265.45
文献[17]算法29.3760.3251497254.85
文献[18]算法29.5830.2811218265.45
本文改进算法29.3760.1461137254.85
30×30传统A*算法44.5560.96630113627.67
文献[17]算法44.3680.74330112652.81
文献[18]算法44.2740.67721512559.44
本文改进算法44.2660.18319511544.32
50×50传统A*算法80.6363.0991087251543.96
文献[17]算法79.8682.8531087251524.61
文献[18]算法79.3741.573544281478.82
本文改进算法77.7841.379499251406.98