基于动态采样对偶可变形网络的实时视频实例分割
|
宋一然,周千寓,邵志文,易冉,马利庄
|
Dynamic sampling dual deformable network for online video instance segmentation
|
Yiran SONG,Qianyu ZHOU,Zhiwen SHAO,Ran YI,Lizhuang MA
|
|
表 1 基于YouTube-VIS 2019验证集的视频实例分割方法的比较 |
Tab.1 Comparisons of video instance segmentation on YouTube-VIS 2019 validation dataset |
|
方法 | mAP/% | AP50/% | AP75/% | MaskTrack R-CNN 50[8] | 30.3 | 51.1 | 32.6 | MaskTrack R-CNN 101[8] | 41.8 | 53.0 | 33.6 | MaskProp 50 [10] | 40.0 | — | 42.9 | MaskProp 101 [10] | 42.5 | — | 45.6 | *VisTR 50 [11] | 36.2 | 59.8 | 36.9 | *VisTR 101 [11] | 40.1 | 64.0 | 45.0 | CrossVIS 50 [3] | 36.3 | 56.8 | 38.9 | CrossVIS 101[3] | 36.6 | 57.3 | 39.7 | CompFeat 50 [31] | 35.3 | 56.0 | 38.6 | *IFC 50 [22] | 41.0 | 62.1 | 45.4 | STC [32] | 36.7 | 57.2 | 38.6 | VSTAM [33] | 39.0 | 62.9 | 41.8 | SipMask 50 [2] | 33.7 | 54.1 | 35.8 | DSDDN 50 | 37.5 | 59.1 | 41.9 | DSDDN 101 | 39.1 | 60.7 | 43.5 |
|
|
|