文本生成图像研究综述
曹寅,秦俊平,马千里,孙昊,闫凯,王磊,任家琪

Survey of text-to-image synthesis
Yin CAO,Junping QIN,Qianli MA,Hao SUN,Kai YAN,Lei WANG,Jiaqi REN
表 1 基于GAN的文本生成图像方法在不同数据集上的各类评价指标对比
Tab.1 Comparison of various metrics for GAN-based text-to-image generation methods on different datasets
方法CUB鸟类数据集Oxford-120花卉数据集COCO数据集
ISFIDR-precisionISFIDISFIDR-precision
GAN-INT-CLS[2]2.3268.792.6679.557.9560.62
StackGAN[10]3.7051.893.2055.288.4574.65
StackGAN++[25]4.0415.303.2648.688.30
AttnGAN[11]4.3623.9867.8325.8935.4985.47
DM-GAN[53]4.7516.0972.3130.4932.6288.56
ControlGAN[36]4.5839.3324.0682.43
SEGAN[34]4.6718.1627.8632.28
MirrorGAN[41]4.5657.6726.4774.52
XMC-GAN[60]30.459.3371.00
CI-GAN[66]5.729.78
DF-GAN[57]5.1014.8144.8321.4267.97
DiverGAN[37]4.9815.633.9920.52
SSA-GAN[58]5.1715.6175.919.3790.60
Adam-GAN[59]5.288.5755.9429.0712.3988.74
TVBi-GAN[71]5.0311.8331.0131.97
文献[67]方法4.2311.173.7116.47
Bridge-GAN[92]4.7416.40
textStyleGAN[63]4.7849.5633.0088.23
文献[45]方法3.5818.142.9034.978.9427.07
SD-GAN[38]4.6735.69
PPAN[29]4.383.52
HfGAN[27]4.483.5727.53
HDGAN[26]4.153.4511.86
DSE-GAN[61]5.1313.2353.2526.7115.3076.31