文本生成图像研究综述
|
曹寅,秦俊平,马千里,孙昊,闫凯,王磊,任家琪
|
Survey of text-to-image synthesis
|
Yin CAO,Junping QIN,Qianli MA,Hao SUN,Kai YAN,Lei WANG,Jiaqi REN
|
|
表 1 基于GAN的文本生成图像方法在不同数据集上的各类评价指标对比 |
Tab.1 Comparison of various metrics for GAN-based text-to-image generation methods on different datasets |
|
方法 | CUB鸟类数据集 | | Oxford-120花卉数据集 | | COCO数据集 | IS | FID | R-precision | | IS | FID | | IS | FID | R-precision | GAN-INT-CLS[2] | 2.32 | 68.79 | — | | 2.66 | 79.55 | | 7.95 | 60.62 | — | StackGAN[10] | 3.70 | 51.89 | — | | 3.20 | 55.28 | | 8.45 | 74.65 | — | StackGAN++[25] | 4.04 | 15.30 | — | | 3.26 | 48.68 | | 8.30 | — | — | AttnGAN[11] | 4.36 | 23.98 | 67.83 | | — | — | | 25.89 | 35.49 | 85.47 | DM-GAN[53] | 4.75 | 16.09 | 72.31 | | — | — | | 30.49 | 32.62 | 88.56 | ControlGAN[36] | 4.58 | — | 39.33 | | — | — | | 24.06 | — | 82.43 | SEGAN[34] | 4.67 | 18.16 | — | | — | — | | 27.86 | 32.28 | — | MirrorGAN[41] | 4.56 | — | 57.67 | | — | — | | 26.47 | — | 74.52 | XMC-GAN[60] | — | — | — | | — | — | | 30.45 | 9.33 | 71.00 | CI-GAN[66] | 5.72 | 9.78 | — | | — | — | | — | — | — | DF-GAN[57] | 5.10 | 14.81 | 44.83 | | — | — | | — | 21.42 | 67.97 | DiverGAN[37] | 4.98 | 15.63 | — | | 3.99 | — | | — | 20.52 | — | SSA-GAN[58] | 5.17 | 15.61 | 75.9 | | — | — | | — | 19.37 | 90.60 | Adam-GAN[59] | 5.28 | 8.57 | 55.94 | | — | — | | 29.07 | 12.39 | 88.74 | TVBi-GAN[71] | 5.03 | 11.83 | — | | — | — | | 31.01 | 31.97 | — | 文献[67]方法 | 4.23 | 11.17 | — | | 3.71 | 16.47 | | — | — | — | Bridge-GAN[92] | 4.74 | — | — | | — | — | | 16.40 | — | — | textStyleGAN[63] | 4.78 | — | 49.56 | | — | — | | 33.00 | — | 88.23 | 文献[45]方法 | 3.58 | 18.14 | — | | 2.90 | 34.97 | | 8.94 | 27.07 | — | SD-GAN[38] | 4.67 | — | — | | — | — | | 35.69 | — | — | PPAN[29] | 4.38 | — | — | | 3.52 | — | | — | — | — | HfGAN[27] | 4.48 | — | — | | 3.57 | — | | 27.53 | — | — | HDGAN[26] | 4.15 | — | — | | 3.45 | — | | 11.86 | — | — | DSE-GAN[61] | 5.13 | 13.23 | 53.25 | | — | — | | 26.71 | 15.30 | 76.31 |
|
|
|