基于特征融合和一致性损失的双目低光照增强
廖嘉文,庞彦伟,聂晶,孙汉卿,曹家乐

Stereo low-light enhancement based on feature fusion and consistency loss
Jia-wen LIAO,Yan-wei PANG,Jing NIE,Han-qing SUN,Jia-le CAO
表 5 不同图像增强方法在SLL10K室内数据集上的指标对比
Tab.5 Indicators comparison of different image enhancement methods on SLL10K indoor dataset
方法 左目 右目
BRISQUE NIQE PIQE LOE PSNR SSIM LPIPS BRISQUE NIQE PIQE LOE PSNR SSIM LPIPS
RetinexNet[11] 34.042 9 5.592 2 49.155 6 3 241.0 11.640 2 0.222 1 0.812 2 33.562 7 5.596 0 48.305 5 3 102.3 11.211 8 0.238 0 0.798 2
ISSR[24] 23.900 7 2.751 8 29.193 1 2 599.6 8.858 8 0.258 8 0.674 5 24.626 0 2.950 9 28.848 0 2 577.8 8.199 8 0.261 9 0.660 3
GLAD[25] 23.139 6 3.673 4 42.574 7 2 547.2 12.875 1 0.229 0 0.666 0 25.854 5 3.581 8 41.646 0 2 515.4 12.174 0 0.247 5 0.648 3
DVENet[16] 23.075 7 3.405 7 32.115 1 2 595.8 9.026 0 0.246 0 0.656 9 22.189 2 3.391 6 30.236 3 2 543.2 8.595 1 0.248 9 0.643 7
ZeroDCE++[17] 27.663 3 3.694 9 38.553 7 2 738.0 11.230 5 0.360 5 0.725 4 27.262 2 3.649 7 38.050 0 2 671.1 10.410 9 0.363 1 0.713 0
RUAS[26] 24.693 4 3.361 7 35.548 8 2 671.3 9.864 7 0.380 4 0.710 2 24.375 1 3.305 0 33.077 0 2 581.7 9.234 6 0.369 1 0.693 1
FCNet 22.531 7 3.390 1 31.279 4 2 593.4 11.222 1 0.406 2 0.609 2 21.273 6 3.329 7 29.109 7 2 539.9 10.407 3 0.407 3 0.598 0