基于特征融合和一致性损失的双目低光照增强
廖嘉文,庞彦伟,聂晶,孙汉卿,曹家乐

Stereo low-light enhancement based on feature fusion and consistency loss
Jia-wen LIAO,Yan-wei PANG,Jing NIE,Han-qing SUN,Jia-le CAO
表 4 不同图像增强方法在SLL10K室外数据集上的指标对比
Tab.4 Indicators comparison of different image enhancement methods on SLL10K outdoor dataset
方法 左目 右目
BRISQUE NIQE PIQE LOE BRISQUE NIQE PIQE LOE
RetinexNet[11] 24.640 7 4.257 3 36.454 5 1 741.5 24.420 5 4.270 1 36.276 1 1752.7
ISSR[24] 28.392 8 2.815 1 27.923 2 753.0 28.903 5 2.810 7 28.525 2 724.2
GLAD[25] 23.628 8 3.280 8 28.633 4 590.8 23.729 0 3.268 0 28.310 2 584.8
DVENet[16] 23.100 2 2.931 7 28.175 1 791.9 22.706 7 2.872 3 27.531 7 740.2
ZeroDCE++[17] 25.684 8 2.832 7 32.569 0 807.7 25.560 2 2.857 2 32.118 0 814.4
RUAS[26] 29.713 1 3.746 6 30.512 2 2 520.0 29.736 9 3.675 5 30.863 7 2 300.6
FCNet 23.095 1 2.641 1 28.111 5 679.2 22.689 8 2.632 3 27.374 5 669.9