眼底病变OCT图像的轻量化识别算法
|
侯小虎,贾晓芬,赵佰亭
|
Lightweight recognition algorithm for OCT images of fundus lesions
|
Xiao-hu HOU,Xiao-fen JIA,Bai-ting ZHAO
|
|
表 3 不同模型在Duke数据集上的对比实验结果 |
Tab.3 Experimental results of performance comparison of different models in Duke dataset |
|
模型 | 图片类别 | P/% | R/% | Spe/% | Acc/% | NP/106 | OAcc/% | Multiscale CNN[9] | AMD | 93.75 | 100 | — | 100 | 1.35 | 96.66 | DME | — | — | — | — | 正常眼底 | 100 | 93.33 | — | 93.33 | Transfer Learning+SMA[10] | AMD | 100 | 100 | 100 | 100 | — | 99.89 | DME | 99.69 | 100 | 99.84 | 99.89 | 正常眼底 | 100 | 99.76 | 100 | 99.89 | Resnet18[12] | AMD | 99.72 | 99.58 | 99.92 | 99.84 | 11.18 | 99.75 | DME | 99.80 | 99.72 | 99.92 | 99.84 | 正常眼底 | 99.70 | 99.84 | 99.78 | 99.80 | MB-CNN | AMD | 100 | 99.7 | 100 | 99.2 | 1.35 | 99.92 | DME | 99.8 | 100 | 99.2 | 99.2 | 正常眼底 | 100 | 100 | 100 | 100 |
|
|
|