眼底病变OCT图像的轻量化识别算法
|
侯小虎,贾晓芬,赵佰亭
|
Lightweight recognition algorithm for OCT images of fundus lesions
|
Xiao-hu HOU,Xiao-fen JIA,Bai-ting ZHAO
|
|
表 2 不同模型在UCSD数据集上的性能对比实验结果 |
Tab.2 Experimental results of performance comparison of different models in UCSD dataset |
|
模型 | 图片类别 | P/% | R/% | Spe/% | Acc/% | NP/106 | OAcc/% | LACNN[5] | CNV | 93.5 | 89.8 | 95.1 | 92.7 | — | 90.1±1.2 | DME | 86.4 | 87.5 | 98.0 | 96.6 | 玻璃膜疣 | 70.0 | 72.5 | 95.9 | 93.6 | 正常眼底 | 94.8 | 97.3 | 97.4 | 97.4 | Multi-Label CNN[6] | CNV | 93.5 | 88.1 | 96.0 | 93.8 | — | 90.4±1.2 | DME | 83.1 | 86.0 | 95.8 | 96.5 | 玻璃膜疣 | 69.8 | 72.1 | 96.8 | 93.3 | 正常眼底 | 95.1 | 96.1 | 97.9 | 96.8 | PCAM[7] | — | 91.52 | 91.22 | — | — | 11.09 | 94.15±1.15 | Resnet18[12] | CNV | 97.83 | 97.63 | 98.27 | 97.97 | 11.18 | 96.52±0.5 | DME | 95.30 | 95.17 | 99.27 | 98.70 | 玻璃膜疣 | 89.87 | 90.70 | 98.80 | 97.97 | 正常眼底 | 97.43 | 97.43 | 98.83 | 98.4 | DMF-CNN[8] | CNV | 97.05 | 97.33 | — | — | — | 94.37 | DME | 96.26 | 93.22 | 94.64 | 玻璃膜疣 | 87.73 | 98.29 | 94.43 | 正常眼底 | 97.49 | 97.62 | 96.03 | MB-CNN | CNV | 98.39 | 98.49 | 98.60 | 98.51 | 1.35 | 97.22±0.6 | DME | 97.30 | 96.27 | 99.49 | 99.07 | 玻璃膜疣 | 92.24 | 90.84 | 99.12 | 98.33 | 正常眼底 | 97.77 | 98.20 | 98.63 | 98.75 |
|
|
|