基于单阶段生成对抗网络的文本生成图像方法
|
杨冰,那巍,向学勤
|
Text-to-image generation method based on single stage generative adversarial network
|
Bing YANG,Wei NA,Xue-qin XIANG
|
|
表 1 CUB和COCO数据集上各个模型FID得分比较 |
Tab.1 Performance of FID scores compared with different models in CUB and COCO datasets |
|
模型 | 来源 | FID | CUB | COCO | AttnGAN[3] | CVPR18 | 23.98 | 35.49 | DM-GAN[17] | CVPR19 | 16.09 | 32.64 | SE-GAN[9] | ICCV19 | 18.17 | 32.28 | VICTR[27] | COLING20 | — | 32.37 | OP-GAN[28] | TPAMI20 | — | 25.80 | DAE-GAN[29] | ICCV21 | 15.19 | 28.12 | CL[15] | BMVC21 | 14.38 | 20.79 | MDD[30] | TMM21 | 15.76 | 24.30 | KD-GAN[31] | TMM21 | 13.89 | 23.92 | DF-GAN[5] | CVPR22 | 14.81 | 21.42 | SSA-GAN[10] | CVPR22 | 15.61 | 19.37 | RAT-GAN[11] | arXiv | 13.91 | 14.60 | DF-GAN (预训练)[5] | GitHub | 12.10 | 15.41 | 本研究 | — | 10.36 | 12.74 |
|
|
|