基于平衡化谱聚类算法的高拱坝结构地震易损性研究
苏扬,张程,胡恩良

Seismic fragility study of high arch dam based on balanced spectral clustering algorithm
Yang SU,Cheng ZHANG,En-liang HU
表 1 地震动强度指标及定义
Tab.1 Ground motion measures and definitions
IM 定义
1)注: $ {t_{{\rm{tot}}}} $为地震持时指标,PGA为峰值加速度指标,均为基本说明指标.
地震持时、有效持时、重要持时、主导周期、平均周期 ${t_{ {\text{tot} } } } ^{1)}$${t_{ {\text{ed} } } } = {t_{ {\text{IA} } = 0.125\;{\rm{m}}/{\rm{s}}} } - {t_{ {\text{IA} } = 0.01\;{\rm{m}}/{\rm{s}}} }$$ {t_{{\text{sd}}(5 - 95)}} = {t_{0.95{\text{IA}}}} - {t_{0.05{\text{IA}}}} $$ {T_{\text{P}}} $$ {T_{\text{M}}} $
震级、震源距、震中距、土体类型、峰值加速度、速度、位移 $ M $$ {R_{{\text{hypo}}}} $$ {R_{{\text{epi}}}} $$ {\text{VS}} $$ {\text{PGA}} $$ {\text{PGV}} $$ {\text{PGD}} $
谱加速度、速度、位移、峰值谱加速度、速度、位移 ${ {{S} }_a}(T,\zeta )$$ {S_v}(T,\zeta ) $$ {{\text{S}}_d}(T,\zeta ) $$ {\text{P}}{{\text{S}}_a} $$ {\text{P}}{{\text{S}}_v} $$ {\text{P}}{{\text{S}}_d} $
A95加速度、有效设计加速度、持续最大加速度、速度 ${\text{A} }95 、 {\text{EDA} }、{\text{SMA} }、{\text{SMV} }$
Arias强度、特征强度、 ${\rm{C}} {\text{-} } {\rm{M}}$强度 ${\text{IA} } = \dfrac{{\text{π} } }{ {2g} }\displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d} }t$$ {\text{IC}} = {\left( {{A_{{\text{rms}}}}} \right)^{3/2}}{\left( {{t_{{\text{sd}}}}} \right)^{1/2}} $${\text{ID} } = \dfrac{ {2g} }{{\text{π} } }{\text{IA} }{\left( { {\text{PGA} } } \right)^{ - 1} }{\left( { {\text{PGV} } } \right)^{ - 1} }$
有效峰值加速度、速度、位移 $ {\text{EPA}} = \dfrac{1}{{2.5}}\left( {\left. {{\text{S}}{{\text{a}}_{{\text{avg}}}}\left( {{T_i},\zeta } \right)} \right|_{{T_{{\text{down}}}} = 0.1}^{{T_{{\text{up}}}} = 0.5}} \right) $$ {\text{EPV}} = \dfrac{1}{{2.5}}\left( {\left. {{\text{S}}{{\text{v}}_{{\text{avg}}}}\left( {{T_i},\zeta } \right)} \right|_{{T_{{\text{down}}}} = 0.8}^{{T_{{\text{up}}}} = 2.0}} \right) $

$ {\text{EPD}} = \dfrac{1}{{2.5}}\left( {\left. {{\text{S}}{{\text{d}}_{{\text{avg}}}}\left( {{T_i},\zeta } \right)} \right|_{{T_{{\text{down}}}} = 2.5}^{{T_{{\text{up}}}} = 4.0}} \right) $
均方加速度、速度、位移 ${ {{P} }_a} = \dfrac{1}{ { {t_{ {\text{tot} } } } } }\displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d} }t$${ {{P} }_v} = \dfrac{1}{ { {t_{ {\text{tot} } } } } }\displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d} }t$${ {{P} }_d} = \dfrac{1}{ { {t_{ {\text{tot} } } } } }\displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d} }t$
均方根加速度、速度、位移 $ {A_{{\text{rms}}}} = {\left( {\dfrac{1}{{{t_{{\text{tot}}}}}}\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $$ {V_{{\text{rms}}}} = {\left( {\dfrac{1}{{{t_{{\text{tot}}}}}}\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $

$ {D_{{\text{rms}}}} = {\left( {\dfrac{1}{{{t_{{\text{tot}}}}}}\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $
平方加速度、速度、位移 ${ {{E} }_a} = \displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d} }t$${ {{E} }_v} = \displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d} }t$${ {{E} }_d} = \displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {u(t)} \right]}\nolimits^2 } {\text{d} }t$
平方根加速度、速度、位移 $ {A_{{\text{rs}}}} = {\left( {\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $$ {V_{{\text{rs}}}} = {\left( {\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $ $ {D_{{\text{rs}}}} = {\left( {\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $
伪谱加速度、速度 ${P_{ {\text{seu} } } }{S_a} = \dfrac{ {2{\text{π} } } }{T}{S_v}(T,\zeta ) = \dfrac{ {4{ {\text{π} } ^2} } }{ { {T^2} } }{S_d}(T,\zeta )$${P_{ {\text{seu} } } }{S_v} = \dfrac{ {2{\text{π} } } }{T}{S_d}(T,\zeta )$
速度强度、加速度谱强度、速度 ${ {{I} }_v} = { { {E} }_v}{\left( { {\text{PGV} } } \right)^{ - 1} }$$ {\text{ASI}} = \displaystyle \int_{0.1}^{0.5} {{S_a}} (T,\zeta ){\text{d}}t $$ {\text{VSI}} = \displaystyle \int_{0.1}^{2.5} {{S_v}} (T,\zeta ){\text{d}}t $
累积绝对速度、Fajfar强度、复合强度 $ {\text{CAV}} = \displaystyle \int_0^{{t_{{\text{tot}}}}} {\left| {\ddot u(t)} \right|} {\text{d}}t $${ {\text{I} }_{\rm{F}}} = {\text{PGV} }{\left( { {t_{ {\text{sd} } } }} \right)^{1/4} }$$ {I_v} = {\left( {{\text{PGV}}} \right)^{2/3}}{\left( {{t_{{\text{sd}}}}} \right)^{1/3}} $$ {I_d} = {\text{PGD}}{\left( {{t_{{\text{sd}}}}} \right)^{1/3}} $
频率比 $ {I_{v/a}} = {\text{PGV}}{\left( {{\text{PGA}}} \right)^{ - 1}} $$ {I_{{v^2}/a}} = {\left( {{\text{PGA}}} \right)^{ - 1}}{\left( {{\text{PGV}}} \right)^2} $$ {I_{d/v}} = {\text{PGD}}{\left( {{\text{PGV}}} \right)^{ - 1}} $