地震持时、有效持时、重要持时、主导周期、平均周期 | ${t_{ {\text{tot} } } } ^{1)}$、 ${t_{ {\text{ed} } } } = {t_{ {\text{IA} } = 0.125\;{\rm{m}}/{\rm{s}}} } - {t_{ {\text{IA} } = 0.01\;{\rm{m}}/{\rm{s}}} }$、 $ {t_{{\text{sd}}(5 - 95)}} = {t_{0.95{\text{IA}}}} - {t_{0.05{\text{IA}}}} $、 $ {T_{\text{P}}} $、 $ {T_{\text{M}}} $ |
震级、震源距、震中距、土体类型、峰值加速度、速度、位移 | $ M $、 $ {R_{{\text{hypo}}}} $、 $ {R_{{\text{epi}}}} $、 $ {\text{VS}} $、 $ {\text{PGA}} $、 $ {\text{PGV}} $、 $ {\text{PGD}} $ |
谱加速度、速度、位移、峰值谱加速度、速度、位移 | ${ {{S} }_a}(T,\zeta )$、 $ {S_v}(T,\zeta ) $、 $ {{\text{S}}_d}(T,\zeta ) $、 $ {\text{P}}{{\text{S}}_a} $、 $ {\text{P}}{{\text{S}}_v} $、 $ {\text{P}}{{\text{S}}_d} $ |
A95加速度、有效设计加速度、持续最大加速度、速度 | ${\text{A} }95 、 {\text{EDA} }、{\text{SMA} }、{\text{SMV} }$ |
Arias强度、特征强度、 ${\rm{C}} {\text{-} } {\rm{M}}$强度 | ${\text{IA} } = \dfrac{{\text{π} } }{ {2g} }\displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d} }t$、 $ {\text{IC}} = {\left( {{A_{{\text{rms}}}}} \right)^{3/2}}{\left( {{t_{{\text{sd}}}}} \right)^{1/2}} $、 ${\text{ID} } = \dfrac{ {2g} }{{\text{π} } }{\text{IA} }{\left( { {\text{PGA} } } \right)^{ - 1} }{\left( { {\text{PGV} } } \right)^{ - 1} }$ |
有效峰值加速度、速度、位移 | $ {\text{EPA}} = \dfrac{1}{{2.5}}\left( {\left. {{\text{S}}{{\text{a}}_{{\text{avg}}}}\left( {{T_i},\zeta } \right)} \right|_{{T_{{\text{down}}}} = 0.1}^{{T_{{\text{up}}}} = 0.5}} \right) $、 $ {\text{EPV}} = \dfrac{1}{{2.5}}\left( {\left. {{\text{S}}{{\text{v}}_{{\text{avg}}}}\left( {{T_i},\zeta } \right)} \right|_{{T_{{\text{down}}}} = 0.8}^{{T_{{\text{up}}}} = 2.0}} \right) $、 $ {\text{EPD}} = \dfrac{1}{{2.5}}\left( {\left. {{\text{S}}{{\text{d}}_{{\text{avg}}}}\left( {{T_i},\zeta } \right)} \right|_{{T_{{\text{down}}}} = 2.5}^{{T_{{\text{up}}}} = 4.0}} \right) $ |
均方加速度、速度、位移 | ${ {{P} }_a} = \dfrac{1}{ { {t_{ {\text{tot} } } } } }\displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d} }t$、 ${ {{P} }_v} = \dfrac{1}{ { {t_{ {\text{tot} } } } } }\displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d} }t$、 ${ {{P} }_d} = \dfrac{1}{ { {t_{ {\text{tot} } } } } }\displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d} }t$ |
均方根加速度、速度、位移 | $ {A_{{\text{rms}}}} = {\left( {\dfrac{1}{{{t_{{\text{tot}}}}}}\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $、 $ {V_{{\text{rms}}}} = {\left( {\dfrac{1}{{{t_{{\text{tot}}}}}}\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $、 $ {D_{{\text{rms}}}} = {\left( {\dfrac{1}{{{t_{{\text{tot}}}}}}\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $ |
平方加速度、速度、位移 | ${ {{E} }_a} = \displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d} }t$、 ${ {{E} }_v} = \displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d} }t$、 ${ {{E} }_d} = \displaystyle \int_0^{ {t_{ {\text{tot} } } }} {\mathop {\left[ {u(t)} \right]}\nolimits^2 } {\text{d} }t$ |
平方根加速度、速度、位移 | $ {A_{{\text{rs}}}} = {\left( {\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {\ddot u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $ 、 $ {V_{{\text{rs}}}} = {\left( {\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {\dot u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $ $ {D_{{\text{rs}}}} = {\left( {\displaystyle \int_0^{{t_{{\text{tot}}}}} {\mathop {\left[ {u(t)} \right]}\nolimits^2 } {\text{d}}t} \right)^{1/2}} $ |
伪谱加速度、速度 | ${P_{ {\text{seu} } } }{S_a} = \dfrac{ {2{\text{π} } } }{T}{S_v}(T,\zeta ) = \dfrac{ {4{ {\text{π} } ^2} } }{ { {T^2} } }{S_d}(T,\zeta )$、 ${P_{ {\text{seu} } } }{S_v} = \dfrac{ {2{\text{π} } } }{T}{S_d}(T,\zeta )$ |
速度强度、加速度谱强度、速度 | ${ {{I} }_v} = { { {E} }_v}{\left( { {\text{PGV} } } \right)^{ - 1} }$、 $ {\text{ASI}} = \displaystyle \int_{0.1}^{0.5} {{S_a}} (T,\zeta ){\text{d}}t $、 $ {\text{VSI}} = \displaystyle \int_{0.1}^{2.5} {{S_v}} (T,\zeta ){\text{d}}t $ |
累积绝对速度、Fajfar强度、复合强度 | $ {\text{CAV}} = \displaystyle \int_0^{{t_{{\text{tot}}}}} {\left| {\ddot u(t)} \right|} {\text{d}}t $、 ${ {\text{I} }_{\rm{F}}} = {\text{PGV} }{\left( { {t_{ {\text{sd} } } }} \right)^{1/4} }$、 $ {I_v} = {\left( {{\text{PGV}}} \right)^{2/3}}{\left( {{t_{{\text{sd}}}}} \right)^{1/3}} $、 $ {I_d} = {\text{PGD}}{\left( {{t_{{\text{sd}}}}} \right)^{1/3}} $ |
频率比 | $ {I_{v/a}} = {\text{PGV}}{\left( {{\text{PGA}}} \right)^{ - 1}} $、 $ {I_{{v^2}/a}} = {\left( {{\text{PGA}}} \right)^{ - 1}}{\left( {{\text{PGV}}} \right)^2} $、 $ {I_{d/v}} = {\text{PGD}}{\left( {{\text{PGV}}} \right)^{ - 1}} $ |