基于循环神经网络的双目视觉物体6D位姿估计
|
杨恒,李卓,康忠元,田兵,董青
|
Binocular vision object 6D pose estimation based on circulatory neural network
|
Heng YANG,Zhuo LI,Zhong-yuan KANG,Bing TIAN,Qing DONG
|
|
表 2 Binocular-RNN与其他方法在LM-O上的精确度比较 |
Tab.2 Comparison of Binocular-RNN with other methods on LM-O % |
|
方法 | m | 训练数据 | 模型 | MEAN | Ape | Can | Cat | Driller | Duck | Eggbox | Glue | Holep | PoseCNN | 1 | Real+syn | 9.6 | 45.2 | 0.9 | 41.4 | 19.6 | 22.0 | 38.5 | 22.1 | 24.9 | PVNet | M | Real+syn | 15.8 | 63.3 | 16.7 | 65.7 | 25.2 | 50.2 | 49.6 | 36.1 | 40.8 | Single-Stage | M | Real+syn | 19.2 | 65.1 | 18.9 | 69.0 | 25.3 | 52.0 | 51.4 | 45.6 | 43.3 | GDR-NET | M | Real+syn | 41.3 | 71.1 | 18.2 | 54.6 | 41.7 | 40.2 | 59.5 | 52.6 | 47.4 | Binocular-RNN | 1 | Real+syn | 49.6 | 78.2 | 40.3 | 67.4 | 50.6 | 45.4 | 60.5 | 68.2 | 57.5 | M | Real+syn | 41.3 | 79.1 | 42.8 | 71.2 | 55.3 | 48.3 | 65.7 | 70.5 | 51.6 | 1 | Real+pbr | 48.6 | 82.3 | 51.4 | 73.5 | 61.2 | 58.3 | 70.5 | 72.6 | 64.8 | M | Real+pbr | 50.4 | 85.7 | 58.3 | 76.2 | 68.3 | 62.1 | 75.8 | 74.2 | 68.9 | DPOD | 1 | Real+syn | — | — | — | — | — | — | — | — | 47.3 | DeepIM | 1 | Real+syn | 59.2 | 63.5 | 26.2 | 55.6 | 52.4 | 63.0 | 71.7 | 52.5 | 55.5 |
|
|
|