基于循环神经网络的双目视觉物体6D位姿估计
杨恒,李卓,康忠元,田兵,董青

Binocular vision object 6D pose estimation based on circulatory neural network
Heng YANG,Zhuo LI,Zhong-yuan KANG,Bing TIAN,Qing DONG
表 2 Binocular-RNN与其他方法在LM-O上的精确度比较
Tab.2 Comparison of Binocular-RNN with other methods on LM-O %
方法 m 训练数据 模型 MEAN
Ape Can Cat Driller Duck Eggbox Glue Holep
PoseCNN 1 Real+syn 9.6 45.2 0.9 41.4 19.6 22.0 38.5 22.1 24.9
PVNet M Real+syn 15.8 63.3 16.7 65.7 25.2 50.2 49.6 36.1 40.8
Single-Stage M Real+syn 19.2 65.1 18.9 69.0 25.3 52.0 51.4 45.6 43.3
GDR-NET M Real+syn 41.3 71.1 18.2 54.6 41.7 40.2 59.5 52.6 47.4
Binocular-RNN 1 Real+syn 49.6 78.2 40.3 67.4 50.6 45.4 60.5 68.2 57.5
M Real+syn 41.3 79.1 42.8 71.2 55.3 48.3 65.7 70.5 51.6
1 Real+pbr 48.6 82.3 51.4 73.5 61.2 58.3 70.5 72.6 64.8
M Real+pbr 50.4 85.7 58.3 76.2 68.3 62.1 75.8 74.2 68.9
DPOD 1 Real+syn 47.3
DeepIM 1 Real+syn 59.2 63.5 26.2 55.6 52.4 63.0 71.7 52.5 55.5