基于循环神经网络的双目视觉物体6D位姿估计
杨恒,李卓,康忠元,田兵,董青

Binocular vision object 6D pose estimation based on circulatory neural network
Heng YANG,Zhuo LI,Zhong-yuan KANG,Bing TIAN,Qing DONG
表 1 Binocular-RNN与其他方法在YCB-Video Dataset上的比较
Tab.1 Comparison of Binocular-RNN with other methods on YCB-Video Dataset
方法 Ref m Acc(ADD(S))/
%
AUC/% ts/ms
ADDS ADD(S)
Only-RNN 1
Only-CNN 1 18.4 62.3 59.6 35
Only-CNN M 15.6
Binocular-RNN 1 56.7 90.8 85.2 23
Binocular-RNN M 70.5 93.4 89.6
PoseCNN[19] 1 21.3 75.9 61.3 24
GDR-Net 1 49.1 89.1 80.2 22
GDR-Net M 60.1 91.6 84.4
Single-Stage[16] M 53.9
DeepIM[19] 1 88.1 81.9 25
CosyPose[20] 1 89.8 84.5 25