函数 | 表达式 | 取值范围 | Sphere | $ f(x) = \displaystyle \sum\nolimits_{i = 1}^n {x_i^2} $ | [−100,100]n | Schwefel 2.22 | $ f(x) = \displaystyle \sum\nolimits_{i = 1}^n {\left| {{x_i}} \right|} +\prod\nolimits_{i = 1}^n {\left| {{x_i}} \right|} $ | ${ {{[ - 10,10]} }^{{n} } }$ | Schwefel 1.2 | $ f(x) = {\displaystyle \sum\nolimits_{i = 1}^n {\left( {\displaystyle \sum\nolimits_{j = 1}^i {{x_j}} } \right)} ^2} $ | [−100,100]n | Rastrigin | $f(x) = \displaystyle \sum\nolimits_{i = 1}^{{n} } { { {\left( {x_i^2 - 10\cos \,\, \left( {2\text{π} {x_i} } \right)+10} \right)}^2} }$ | [−5.12,5.12]n | Ackley | $\begin{gathered} f(x) = - 20\exp \,\, \left( { - 0.2\sqrt {\dfrac{1}{n}\displaystyle \sum\nolimits_{i = 1}^n {x_i^2} } } \right) - \\\exp \,\, \left( {\dfrac{1}{n}\displaystyle \sum\nolimits_{i = 1}^n {\cos \,\, 2\text{π} {x_i} } } \right)+20+{\rm{e}} \end{gathered}$ | [−32,32]n | Griewank | $\begin{gathered} f(x) = \dfrac{1}{ {4\;000} }\displaystyle \sum\nolimits_{i = 1}^n { {\left( { {x_i} - 100} \right)}^2} - \\\prod\nolimits_{i = 1}^n {\cos \,\, \left( {\dfrac{ { {x_i} - 100} }{ {\sqrt i } } } \right)} +1 \end{gathered}$ | ${ { {[ - 600,600]} }^{{n} } }$ |
|