基于语义分割的沥青路面裂缝智能识别
|
杨燕泽,王萌,刘诚,徐慧通,张小月
|
Intelligent identification of asphalt pavement cracks based on semantic segmentation
|
Yan-ze YANG,Meng WANG,Cheng LIU,Hui-tong XU,Xiao-yue ZHANG
|
|
表 5 训练模型的基本参数 |
Tab.5 Basic parameters of training model |
|
模型序号 | 算法 | 网络 | 损失函数 | 占用空间/MB | 训练时长/h | 模型1(M1) | U-Net | R101 | CROSS | 423 | 3.12 | 模型2(M2) | DeepLabV3 | R101 | CROSS | 665 | 4.56 | 模型3(M3) | PSPNet | R101 | CROSS | 519 | 3.43 | 模型4(M4) | DeepLabV3+ | R101 | CROSS | 478 | 3.53 | 模型5(M5) | DeepLabV3 | R101 | FOCAL | 665 | 3.79 | 模型6(M6) | PSPNet | R101 | FOCAL | 519 | 2.72 | 模型7(M7) | DeepLabV3 | R101 | DICE | 665 | 3.78 | 模型8(M8) | PSPNet | R101 | DICE | 519 | 2.71 | 模型9(M9) | U-Net | R101 | CROSS | 423 | 11.68 | 模型10(M10) | DeepLabV3 | R101 | CROSS | 665 | 20.40 | 模型11(M11) | PSPNet | R101 | CROSS | 519 | 15.80 | 模型12(M12) | DeepLabV3+ | R101 | CROSS | 478 | 14.21 | 模型13(M13) | DeepLabV3 | R101 | FOCAL | 665 | 18.29 | 模型14(M14) | PSPNet | R101 | FOCAL | 519 | 12.98 | 模型15(M15) | DeepLabV3 | R101 | DICE | 665 | 18.23 | 模型16(M16) | PSPNet | R101 | DICE | 519 | 15.86 | 模型17(M17) | DeepLabV3 | R50 | CROSS | 518 | 13.40 | 模型18(M18) | DeepLabV3 | R18 | CROSS | 106 | 4.80 | 模型19(M19) | DeepLabV3 | MV2 | CROSS | 142 | 4.10 | 模型20(M20) | PSPNet | R50 | CROSS | 373 | 8.20 | 模型21(M21) | PSPNet | R18 | CROSS | 97.6 | 4.90 | 模型22(M22) | PSPNet | MV2 | CROSS | 104 | 3.90 |
|
|
|