基于自注意力机制的双分支密集人群计数算法
杨天乐,李玲霞,张为

Dual-branch crowd counting algorithm based on self-attention mechanism
Tian-le YANG,Ling-xia LI,Wei ZHANG
表 3 时间及空间复杂度对比的实验结果
Tab.3 Experimental results of time and space complexity comparison
类型 算法 框架方式 MAE MSE Np/106 GFLOPs/109
全监督 CAN[38] CNN 62.3 100.0 18.1 64.6
FIDT[27] CNN 57.0 103.4 66.6 80.1
RAN[32] CNN 57.9 99.2 22.9 115.9
DBCC-Net CNN+Transformer 55.3 93.1 38.0 98.5
弱监督 TransCrowd[16] Transformer 66.1 95.4 86.0 49.3
CCTrans[39] Transformer 64.4 95.4 104.0 57.6
CCST[36] Transformer 62.8 94.1 294.7 323.6
DBCC-Net CNN+Transformer 60.1 94.0 38.0 98.5