基于自注意力机制的双分支密集人群计数算法
|
杨天乐,李玲霞,张为
|
Dual-branch crowd counting algorithm based on self-attention mechanism
|
Tian-le YANG,Ling-xia LI,Wei ZHANG
|
|
表 3 时间及空间复杂度对比的实验结果 |
Tab.3 Experimental results of time and space complexity comparison |
|
类型 | 算法 | 框架方式 | MAE | MSE | Np/106 | GFLOPs/109 | 全监督 | CAN[38] | CNN | 62.3 | 100.0 | 18.1 | 64.6 | FIDT[27] | CNN | 57.0 | 103.4 | 66.6 | 80.1 | RAN[32] | CNN | 57.9 | 99.2 | 22.9 | 115.9 | DBCC-Net | CNN+Transformer | 55.3 | 93.1 | 38.0 | 98.5 | 弱监督 | TransCrowd[16] | Transformer | 66.1 | 95.4 | 86.0 | 49.3 | CCTrans[39] | Transformer | 64.4 | 95.4 | 104.0 | 57.6 | CCST[36] | Transformer | 62.8 | 94.1 | 294.7 | 323.6 | DBCC-Net | CNN+Transformer | 60.1 | 94.0 | 38.0 | 98.5 |
|
|
|