基于自注意力机制的双分支密集人群计数算法
杨天乐,李玲霞,张为

Dual-branch crowd counting algorithm based on self-attention mechanism
Tian-le YANG,Ling-xia LI,Wei ZHANG
表 1 位置级-全监督对比实验的结果
Tab.1 Results of position-level full supervision comparison experiment
算法 SHT Part A SHT Part B UCF_QNRF UCF_CC_50 JHU-Crowd++
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
MCNN[11] 110.2 173.2 26.4 41.3 277 426 377.6 509.1 188.9 483.4
CSRNet[24] 68.2 115.0 10.6 16.0 266.1 397.5 85.9 309.2
BL[25] 62.8 101.8 7.7 12.7 88.7 154.8 229.3 308.2 75.0 299.9
DM-Count[19] 59.7 95.7 7.4 11.8 85.0 148.0 211.0 291.5
GL[26] 61.3 95.4 7.3 11.7 84.3 147.5 59.9 259.5
FIDT[27] 57.0 103.4 6.9 11.8 89.0 153.5 171.4 233.1 66.6 253.6
CLTR[28] 56.9 95.2 6.5 10.6 85.8 141.3 59.5 240.6
NDConv[29] 61.4 104.18 7.8 13.8 91.2 165.6 167.2 240.6
DFRNet[30] 59.6 100.9 6.9 12.1 80.2 145.5
SGANet[31] 57.6 101.1 6.6 10.2 87.6 152.5 224.6 314.6
RAN[32] 57.9 99.2 7.2 11.9 83.4 141.8 155.0 219.5 59.4 257.6
CTrans-MISN[33] 55.8 95.9 7.3 11.4 95.2 180.1 71.5 280.1
DBCC-Net 55.3 93.1 6.7 9.8 82.9 145.1 147.5 205.1 55.7 248.0