基于伪标签细化和语义对齐的异构域自适应
|
吴兰,崔全龙
|
Heterogeneous domain adaptation based on pseudo label refinement and semantic alignment
|
Lan WU,Quan-long CUI
|
|
表 2 不同方法在 Office+Caltech-256数据集上进行同域跨特征迁移的分类结果 |
Tab.2 Classification results of different methods for same domain cross-feature migration on Office+Caltech-256 dataset |
|
方法 | ${{\rm{Acc}}_ {{\rm{SD}}}} $/% | | ${{{\rm{Acc}}}_ {{\rm{DS}}}} $/% | A→A | C→C | W→W | 平均值 | A→A | C→C | W→W | 平均值 | SVMt | 88.66 | 77.31 | 89.32 | 85.10 | | 43.03 | 30.15 | 55.28 | 42.82 | NNt | 90.00 | 79.56 | 91.42 | 86.99 | 42.82 | 31.33 | 60.87 | 45.01 | MMDT | 89.30 | 80.30 | 87.30 | 85.63 | 40.50 | 30.60 | 59.10 | 43.40 | G-JDA | 92.30 | 86.70 | 89.40 | 89.47 | 50.30 | 33.70 | 63.80 | 49.27 | CDLS | 91.70 | 81.80 | 95.20 | 89.57 | 46.40 | 31.80 | 63.10 | 47.10 | STN | 92.19 | 82.92 | 95.43 | 90.18 | 47.62 | 30.83 | 64.71 | 47.72 | SSAN | 92.45 | 87.01 | 96.66 | 92.04 | 52.91 | 37.24 | 69.81 | 53.32 | LG | 92.36 | 84.15 | 96.04 | 90.85 | 44.70 | 31.20 | 63.10 | 46.33 | SDA-PPLS | 92.85 | 87.34 | 96.31 | 92.17 | 54.88 | 33.18 | 71.72 | 53.26 | 本研究 | 93.70 | 89.03 | 97.29 | 93.34 | 54.40 | 39.09 | 72.83 | 55.44 |
|
|
|