轻量化YOLOv5s网络车底危险物识别算法
|
金鑫,庄建军,徐子恒
|
Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles
|
Xin JIN,Jian-jun ZHUANG,Zi-heng XU
|
|
表 5 常见目标检测模型的性能对比 |
Tab.5 Performance comparison of common object detection models |
|
模型 | P/% | R/% | Par/MB | Me/MB | FPS | mAP_0.5/% | Faster R-CNN | 71.51 | 85.61 | 137.10 | 522.99 | 13.18 | 87.88 | YOLOv3 | 93.63 | 87.39 | 61.53 | 234.74 | 39.63 | 92.11 | YOLOv4 | 93.82 | 91.22 | 63.95 | 243.94 | 30.97 | 93.97 | YOLOX-s | 97.74 | 97.21 | 8.94 | 34.10 | 42.89 | 97.15 | YOLOv7 | 96.75 | 94.97 | 37.21 | 141.93 | 33.14 | 97.03 | YOLOv5s | 96.59 | 94.08 | 7.03 | 26.81 | 50.39 | 96.37 | SG-YOLOv5s | 96.80 | 97.96 | 2.02 | 7.70 | 47.39 | 97.63 |
|
|
|