轻量化YOLOv5s网络车底危险物识别算法
金鑫,庄建军,徐子恒

Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles
Xin JIN,Jian-jun ZHUANG,Zi-heng XU
表 3 SG-YOLOv5s网络模型消融实验结果分析
Tab.3 Analysis of ablative experimental results for SG-YOLOv5s network model
模型 P/% R/% Par/MB Me/MB FPS mAP_0.5/%
①YOLOv5s 96.59 94.08 7.03 26.81 50.39 96.37
②YOLOV5s+Mixup 97.60 94.31 7.03 26.81 49.22 96.49
③YOLOv5s+Backbone+Mixup 96.17 94.50 4.15 15.83 46.37 96.49
④YOLOv5s+Neck+Mixup 96.99 96.96 4.90 18.68 45.33 97.00
⑤Backbone+Neck+Mixup+CIoU 96.92 97.02 2.02 7.70 47.04 97.19
⑥Backbone+Neck+Mixup+SIoU 96.80 97.96 2.02 7.70 47.39 97.63