轻量化YOLOv5s网络车底危险物识别算法
|
金鑫,庄建军,徐子恒
|
Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles
|
Xin JIN,Jian-jun ZHUANG,Zi-heng XU
|
|
表 3 SG-YOLOv5s网络模型消融实验结果分析 |
Tab.3 Analysis of ablative experimental results for SG-YOLOv5s network model |
|
模型 | P/% | R/% | Par/MB | Me/MB | FPS | mAP_0.5/% | ①YOLOv5s | 96.59 | 94.08 | 7.03 | 26.81 | 50.39 | 96.37 | ②YOLOV5s+Mixup | 97.60 | 94.31 | 7.03 | 26.81 | 49.22 | 96.49 | ③YOLOv5s+Backbone+Mixup | 96.17 | 94.50 | 4.15 | 15.83 | 46.37 | 96.49 | ④YOLOv5s+Neck+Mixup | 96.99 | 96.96 | 4.90 | 18.68 | 45.33 | 97.00 | ⑤Backbone+Neck+Mixup+CIoU | 96.92 | 97.02 | 2.02 | 7.70 | 47.04 | 97.19 | ⑥Backbone+Neck+Mixup+SIoU | 96.80 | 97.96 | 2.02 | 7.70 | 47.39 | 97.63 |
|
|
|