文献[13]方法 | ${D}_{\mathrm{m} }={D}_{\mathrm{h} }{\left(1-{\varphi }_{\mathrm{l} }\right)}^{3/2}$ |
文献[14]方法 | $ {D}_{\mathrm{m}}={D}_{\mathrm{h}}+\dfrac{{\varphi }_{\mathrm{l}}}{\dfrac{1}{{D}_{\mathrm{l}}-{D}_{\mathrm{h}}}+\dfrac{1-{\varphi }_{\mathrm{l}}}{3{D}_{\mathrm{h}}}} $ |
文献[15]方法 | $ {D}_{\mathrm{m}}={D}_{\mathrm{h}}\mathrm{e}\mathrm{x}\mathrm{p}\left(-\dfrac{1.5{\varphi }_{\mathrm{l}}}{1-{\varphi }_{\mathrm{l}}}\right) $ |
文献[16]方法 | $ \dfrac{{D}_{\mathrm{m}}-{D}_{\mathrm{h}}}{{D}_{\mathrm{m}}+2{D}_{\mathrm{h}}}={\varphi }_{\mathrm{l}}\left(\dfrac{{D}_{\mathrm{l}}-{D}_{\mathrm{h}}}{{D}_{\mathrm{l}}+2{D}_{\mathrm{h}}}\right) $ |
文献[17]方法 | ${D}_{\mathrm{m} }=\left\{\begin{array}{c}\dfrac{ {D}_{\mathrm{h} }{D}_{\mathrm{l} } }{\left(1-{\varphi }_{\mathrm{l} }\right){D}_{\mathrm{l} }+{\varphi }_{\mathrm{l} }{D}_{\mathrm{h} } }\\ {D}_{\mathrm{h} }\left(1-{\varphi }_{\mathrm{l} }\right)+{D}_{\mathrm{l} }{\varphi }_{\mathrm{l} }\end{array}\right.$ |
文献[18]方法 | $ {D}_{\mathrm{c}\mathrm{o}\mathrm{n}}={D}_{\mathrm{c}\mathrm{e}\mathrm{m}}(0.11{\varphi }_{\mathrm{ITZ}}+1-{\varphi }_{\mathrm{A}})\dfrac{2}{2+{\varphi }_{\mathrm{A}}} $ |
文献[19]方法 | $ {D}_{\mathrm{c}\mathrm{o}\mathrm{n}}={D}_{\mathrm{c}\mathrm{e}\mathrm{m}}\left(1+\dfrac{{\varphi }_{\mathrm{A}}}{\dfrac{1-{\varphi }_{\mathrm{A}}}{3}+\dfrac{1}{{2\left({D}_{\mathrm{I}}/{D}_{\mathrm{c}\mathrm{e}\mathrm{m}}\right)}^{\varepsilon }-1}}\right) $ |