时序基因驱动的特征表示模型
|
黄建平,陈可,张建松,沈思琪
|
Time-series gene driven feature representation model
|
Jian-ping HUANG,Ke CHEN,Jian-song ZHANG,Si-qi SHEN
|
|
表 5 采用不同方法对MCE、INS、TMP数据集的分类性能 |
Tab.5 Classification performance on MCE, INS, TMP datasets with different methods |
|
% | 数据集 | 方法 | P | R | F1 | F0.5 | MCE | NN-ED | 59.90 | 34.82 | 44.01 | 52.38 | MCE | NN-DTW | 60.17 | 41.41 | 49.04 | 55.15 | MCE | NN-CID | 57.12 | 40.86 | 47.55 | 52.93 | MCE | FS | 54.34 | 43.54 | 48.34 | 51.74 | MCE | TSF | 76.80 | 52.61 | 62.50 | 70.30 | MCE | SAX-VSM | 65.12 | 59.96 | 62.44 | 64.01 | MCE | MC-DCNN | 78.94 | 49.27 | 60.70 | 70.43 | MCE | LSTM | 79.69 | 53.56 | 64.10 | 72.58 | MCE | CVAE | 77.92 | 54.12 | 64.32 | 72.02 | MCE | GeNE | 80.33 | 58.17 | 67.45 | 74.61 | INS | NN-ED | 28.51 | 19.33 | 23.01 | 26.01 | INS | NN-DTW | 27.14 | 21.73 | 24.13 | 25.84 | INS | NN-CID | 52.65 | 10.25 | 17.05 | 28.75 | INS | FS | 31.66 | 16.73 | 21.84 | 26.85 | INS | TSF | 48.11 | 21.04 | 29.13 | 38.20 | INS | SAX-VSM | 62.71 | 28.41 | 40.11 | 50.51 | INS | MC-DCNN | 53.77 | 5.79 | 10.38 | 20.06 | INS | LSTM | 60.25 | 28.01 | 38.23 | 48.93 | INS | CVAE | 63.27 | 26.78 | 37.57 | 49.67 | INS | GeNE | 71.50 | 33.15 | 45.34 | 58.01 | TMP | NN-ED | 54.43 | 47.88 | 50.95 | 52.92 | TMP | NN-DTW | 51.95 | 52.43 | 52.14 | 52.04 | TMP | NN-CID | 56.12 | 49.26 | 52.44 | 54.61 | TMP | FS | 65.17 | 58.82 | 61.85 | 63.76 | TMP | TSF | 54.20 | 60.94 | 57.42 | 55.47 | TMP | SAX-VSM | 72.22 | 59.05 | 64.94 | 69.10 | TMP | MC-DCNN | 76.79 | 66.13 | 71.06 | 74.37 | TMP | LSTM | 56.21 | 53.15 | 54.63 | 55.69 | TMP | CVAE | 74.86 | 59.22 | 66.14 | 71.15 | TMP | GeNE | 80.23 | 64.57 | 71.55 | 76.51 |
|
|
|