基于3D-ResNet双流网络的VR病评估模型
权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩

VR sickness estimation model based on 3D-ResNet two-stream network
Wei QUAN,Yong-qing CAI,Chao WANG,Jia SONG,Hong-kai SUN,Lin-xuan LI
表 1 子网络结构
Tab.1 Sub-network structure
网络层 输出大小 3D-ResNet50
Conv1 $ L \times 112 \times 112 $ $ 7 \times 7 \times 7 $,64,stride 2
Conv2_x $ L \times 56 \times 56 $ $ \left[\begin{array}{c}1\times 1\times 1,64\\ 3\times 3\times 3,64\\ 1\times 1\times 1,256\end{array}\right]\times 3 $
Conv3_x $ \dfrac{L}{2} \times 28 \times 28 $ $ \left[\begin{array}{c}1\times 1\times 1,128\\ 3\times 3\times 3,128\\ 1\times 1\times 1,512\end{array}\right]\times 4 $
Conv4_x $ \dfrac{L}{4} \times 14 \times 14 $ $\left[\begin{array}{c}1\times 1\times 1,256\\ 3\times 3\times 3,256\\ 1\times 1\times 1,1\;024\end{array}\right]\times 6$
Conv5_x $ \dfrac{L}{8} \times 7 \times 7 $ $\left[\begin{array}{c}1\times 1\times 1,512\\ 3\times 3\times 3,512\\ 1\times 1\times 1,2\;048\end{array}\right]\times 3$
$ 1 \times 1 \times 1 $ 3D-Average Pool,Fc Layer with Softmax