基于多尺度互注意力的遥感图像语义分割网络
|
刘春娟,乔泽,闫浩文,吴小所,王嘉伟,辛钰强
|
Semantic segmentation network for remote sensing image based on multi-scale mutual attention
|
Chun-juan LIU,Ze QIAO,Hao-wen YAN,Xiao-suo WU,Jia-wei WANG,Yu-qiang XIN
|
|
表 7 在Jiage数据集上与 8 种最先进的方法进行定量比较 |
Tab.7 Quantitative comparison with 8 state-of-the-art methods on Jiage dataset |
|
模型 | IoU/% | mIoU/% | 背景 | 植被 | 道路 | 水 | 建筑物 | SegNet | 61.42 | 87.27 | 91.44 | 45.42 | 66.58 | 70.42 | PSPNet | 79.08 | 89.91 | 96.25 | 48.81 | 81.27 | 79.06 | DeeplabV3 | 80.83 | 88.67 | 95.27 | 56.51 | 78.66 | 79.99 | EMANet | 81.93 | 88.37 | 95.13 | 63.88 | 82.52 | 82.37 | MSRF | 80.62 | 87.49 | 94.19 | 69.51 | 81.37 | 82.64 | CCNet | 81.29 | 90.86 | 95.30 | 67.06 | 81.64 | 83.23 | MagNet | 82.37 | 91.31 | 95.70 | 70.47 | 82.78 | 84.52 | DANNet | 81.33 | 90.51 | 94.58 | 75.28 | 83.96 | 85.13 | DCED-MMA-CGU | 84.15 | 91.53 | 95.51 | 75.31 | 86.44 | 86.59 |
|
|
|