基于多尺度互注意力的遥感图像语义分割网络
|
刘春娟,乔泽,闫浩文,吴小所,王嘉伟,辛钰强
|
Semantic segmentation network for remote sensing image based on multi-scale mutual attention
|
Chun-juan LIU,Ze QIAO,Hao-wen YAN,Xiao-suo WU,Jia-wei WANG,Yu-qiang XIN
|
|
表 6 在Potsdam数据集上与8种最先进的方法进行定量比较 |
Tab.6 Quantitative comparison with 8 state-of-the-art methods on Potsdam dataset |
|
模型 | IoU/% | mIoU/% | 背景 | 汽车 | 不透水表面 | 树 | 低植被 | 建筑物 | SegNet | 69.49 | 59.85 | 83.44 | 52.97 | 79.26 | 80.36 | 70.90 | PSPNet | 78.33 | 65.84 | 86.78 | 56.21 | 81.55 | 88.32 | 76.17 | DeeplabV3 | 78.86 | 67.57 | 85.63 | 60.38 | 80.57 | 87.51 | 76.75 | MSRF | 77.22 | 73.86 | 85.56 | 73.40 | 79.60 | 90.66 | 80.05 | EMANet | 77.40 | 75.60 | 85.60 | 80.70 | 82.10 | 89.30 | 81.80 | CCNet | 76.39 | 78.79 | 87.60 | 79.62 | 82.24 | 89.71 | 82.39 | DANNet | 82.19 | 77.35 | 87.28 | 82.57 | 82.62 | 92.51 | 84.09 | MagNet | 79.54 | 82.09 | 88.67 | 79.85 | 83.00 | 92.07 | 84.20 | DCED-MMA-CGU | 83.21 | 82.42 | 87.89 | 83.09 | 83.79 | 92.71 | 85.52 |
|
|
|