特征融合与分发的多专家并行推荐算法框架
|
杨哲,葛洪伟,李婷
|
Framework of feature fusion and distribution with mixture of experts for parallel recommendation algorithm
|
Zhe YANG,Hong-wei GE,Ting LI
|
|
表 4 SOTA并行架构模型使用ME-PRAF后在3个数据集上的性能比较 |
Tab.4 Performance comparison of SOTA parallel architecture models after using ME-PRAF on three datasets |
|
模型 | Criteo | | Avazu | | MovieLens-1M | AUC | LogLoss | AUC | LogLoss | AUC | LogLoss | DCN | 0.8099 | 0.4419 | | 0.7905 | 0.3744 | | 0.8935 | 0.3197 | DCNME | 0.8116 | 0.4403 | 0.7919 | 0.3731 | 0.8962 | 0.3174 | AutoInt+ | 0.8083 | 0.4434 | 0.7774 | 0.3811 | 0.8488 | 0.3753 | AutoInt+ME | 0.8104 | 0.4414 | 0.7899 | 0.3737 | 0.8928 | 0.3250 | DCN-v2 | 0.8115 | 0.4406 | 0.7907 | 0.3742 | 0.8964 | 0.3160 | DCN-v2ME | 0.8122 | 0.4398 | 0.7928 | 0.3732 | 0.8970 | 0.3163 |
|
|
|