特征融合与分发的多专家并行推荐算法框架
|
杨哲,葛洪伟,李婷
|
Framework of feature fusion and distribution with mixture of experts for parallel recommendation algorithm
|
Zhe YANG,Hong-wei GE,Ting LI
|
|
表 2 ME-DCN与其他SOTA模型在3个数据集上的性能比较 |
Tab.2 Performance comparisons between ME-DCN and other SOTA models in three datasets |
|
模型 | Criteo | | Avazu | | MovieLens-1M | AUC | LogLoss | AUC | LogLoss | AUC | LogLoss | DeepFM | 0.8007 | 0.4508 | | 0.7852 | 0.3780 | | 0.8932 | 0.3202 | DCN | 0.8099 | 0.4419 | 0.7905 | 0.3744 | 0.8935 | 0.3197 | xDeepFM | 0.8052 | 0.4418 | 0.7894 | 0.3794 | 0.8923 | 0.3251 | AutoInt+ | 0.8083 | 0.4434 | 0.7774 | 0.3811 | 0.8488 | 0.3753 | DCN-v2 | 0.8115 | 0.4406 | 0.7907 | 0.3742 | 0.8964 | 0.3160 | EDCN | 0.8001 | 0.5415 | 0.7793 | 0.3803 | 0.8722 | 0.3469 | CowClip | 0.8097 | 0.4420 | 0.7906 | 0.3740 | 0.8961 | 0.3174 | 本文方法 | 0.8122 | 0.4398 | 0.7928 | 0.3732 | 0.8970 | 0.3163 |
|
|
|