${S_{{\rm{CVS}}} }$ | $T_{\rm{c}}^2$ | ${\boldsymbol{v} }_k{\boldsymbol{\varLambda} } _k^{ - 1}{ {\boldsymbol{v} }_k^{\rm{T} } }$ | ${J_{ {\rm{th} },T_{\rm{c}}^2} }{\text{ = } }\dfrac{ {A({n^2} - 1)} }{ {n(n - A)} }{F_{A,n - A,\alpha } }$ |
${S_{{\rm{IPS}}} }$ | $ T_x^2 $ | ${\boldsymbol{v} }_x{\boldsymbol{\varLambda} } _x^{ - 1}{ {\boldsymbol{v} }_x^{\rm{T} } }$ | ${J_{{\rm{th}},T_x^2} } = \dfrac{ { {A_x}({n^2} - 1)} }{ {n(n - {A_x})} }{F_{ {A_x},n - {A_x},\alpha } }$ |
${S_{{\rm{OPS}}} }$ | $ T_y^2 $ | ${\boldsymbol{v} }_y{\boldsymbol{\varLambda} } _y^{ - 1}{ {\boldsymbol{v} }_y^{\rm{T}}}$ | ${J_{{\rm{th}},T_y^2} }{\text{ = } }\dfrac{ { {A_y}({n^2} - 1)} }{ {n(n - {A_y})} }{F_{ {A_y},n - {A_y},\alpha } }$ |
${S_{{\rm{IRS}}} }$ | $ {Q_x} $ | ${\left\| { { {{\boldsymbol{\tilde x}}}_x} } \right\|^2}$ | ${J_{{\rm{th}},{Q_x} } } = g\chi _{h,\alpha }^2$ |
${S_{{\rm{ORS}}} }$ | $ {Q_y} $ | ${\left\| { { {{\boldsymbol{\tilde y}}}_y} } \right\|^2}$ | ${J_{{\rm{th}},{Q_y} } } = g\chi _{h,\alpha }^2$ |