多特征融合的驾驶员疲劳状态检测方法
方浩杰,董红召,林少轩,罗建宇,方勇

Driver fatigue state detection method based on multi-feature fusion
Hao-jie FANG,Hong-zhao DONG,Shao-xuan LIN,Jian-yu LUO,Yong FANG
表 1 不同模型的性能比较
Tab.1 Performance comparison of different models
模型 M/106 FLOPs/109 AP mAP/%
Um Ym Ce Oe Cm Om Ya
Faster-RCNN [21] 137.1 370.4 99.8 100 73.1 74.2 97.2 98.2 90.5 90.6
YOLOv3-tiny [22] 8.7 13.0 99.0 99.0 90.3 91.0 94.1 94.3 94.0 94.5
SSD[23] 26.3 62.8 99.5 99.8 84.2 90.0 89.8 95.4 98.0 93.8
YOLOv5-S[24] 7.0 15.9 99.0 99.3 91.8 92.5 94.5 95.0 94.5 95.2
YOLOv5-S+Detection layer 8.2 28.3 98.7 99.1 94.8 95.7 97.3 98.8 97.6 97.5
YOLOv5-S+BiFPN 7.1 16.6 99.2 99.4 93.2 94.4 96.3 97.3 98.0 96.8
YOLOv5-S+ Detection layer+BiFPN (本文模型) 9.3 29.9 99.5 99.5 98.6 99.5 99.5 99.5 99.5 99.4