面向水下场景的轻量级图像语义分割网络
|
郭浩然,郭继昌,汪昱东
|
Lightweight semantic segmentation network for underwater image
|
Hao-ran GUO,Ji-chang GUO,Yu-dong WANG
|
|
表 4 各网络在海草数据集上的精度指标对比结果 |
Tab.4 Comparison results of accuracy index in each network on seagrass dataset |
|
语义分割模型 | mIoU/% | | PA/% | 0~2 m | 2~6 m | 0~2 m | 2~6 m | 本文方法 | 88.63 | 89.01 | | 96.08 | 96.10 | U-Net[3] | 87.69 | 87.42 | 95.89 | 95.62 | SegNet[2] | 83.90 | 82.93 | 94.96 | 94.92 | Deeplab[4] | 87.36 | 87.93 | 95.84 | 95.88 | PSPNet[7] | 89.08 | 89.29 | 96.31 | 96.33 | GCN[24] | 87.37 | 86.97 | 95.82 | 95.73 | OCNet[15] | 88.96 | 89.41 | 96.26 | 96.35 | SUIMNet[13] | 88.24 | 88.45 | 95.91 | 95.93 | LEDNet[29] | 87.48 | 87.84 | 95.85 | 95.88 | BiseNetv2[21] | 88.43 | 88.85 | 96.03 | 96.09 | ENet[14] | 85.94 | 86.60 | 95.17 | 95.21 | ERFNet[16] | 86.72 | 87.05 | 95.36 | 95.48 | CGNet[27] | 87.15 | 87.24 | 95.43 | 95.46 |
|
|
|