面向水下场景的轻量级图像语义分割网络
|
郭浩然,郭继昌,汪昱东
|
Lightweight semantic segmentation network for underwater image
|
Hao-ran GUO,Ji-chang GUO,Yu-dong WANG
|
|
表 3 各网络在SUIM数据集上的精度指标对比结果 |
Tab.3 Comparison results of accuracy index on SUIM dataset in each network |
|
语义分割模型 | IoU/% | mIoU/% | PA/% | BW | HD | PF | WR | RO | RI | FV | SR | 本文方法 | 84.62 | 63.99 | 18.46 | 41.84 | 61.93 | 53.44 | 46.00 | 58.42 | 53.55 | 85.32 | U-Net[3] | 79.46 | 32.25 | 21.85 | 33.94 | 23.65 | 50.28 | 38.16 | 42.16 | 39.85 | 79.44 | SegNet[2] | 80.63 | 45.67 | 17.45 | 32.24 | 55.72 | 47.62 | 43.92 | 51.51 | 46.85 | 82.19 | Deeplab[4] | 81.82 | 50.26 | 17.05 | 43.33 | 63.60 | 57.18 | 43.59 | 55.35 | 51.52 | 84.27 | PSPNet[7] | 82.51 | 65.04 | 28.54 | 46.56 | 62.88 | 55.80 | 46.78 | 55.98 | 55.51 | 86.41 | GCN[24] | 79.32 | 38.57 | 15.09 | 30.38 | 54.25 | 49.94 | 36.09 | 52.02 | 44.46 | 81.28 | OCNet[15] | 83.14 | 64.03 | 24.31 | 43.11 | 61.78 | 54.92 | 47.41 | 54.97 | 54.30 | 85.89 | SUIMNet[13] | 80.64 | 63.45 | 23.27 | 41.25 | 60.89 | 53.12 | 46.02 | 57.12 | 53.22 | 85.22 | LEDNet[19] | 82.96 | 58.47 | 18.02 | 42.86 | 50.96 | 58.13 | 46.13 | 54.99 | 51.36 | 84.25 | BiseNetv2[21] | 83.67 | 59.29 | 18.27 | 39.58 | 56.54 | 58.16 | 47.33 | 56.93 | 52.47 | 84.96 | ENet[14] | 80.94 | 50.60 | 16.97 | 36.71 | 51.73 | 49.24 | 41.99 | 50.46 | 47.33 | 82.31 | ERFNet[16] | 83.02 | 52.95 | 17.50 | 41.72 | 49.80 | 53.70 | 45.98 | 54.30 | 50.40 | 83.75 | CGNet[17] | 81.21 | 60.04 | 17.71 | 42.91 | 53.62 | 57.62 | 46.46 | 53.71 | 51.66 | 83.99 |
|
|
|