自适应樽海鞘群算法求解考虑运输时间的柔性作业车间调度
|
牛昊一,吴维敏,章庭棋,沈微,张涛
|
Adaptive salp swarm algorithm for solving flexible job shop scheduling problem with transportation time
|
Hao-yi NIU,Wei-min WU,Ting-qi ZHANG,Wei SHEN,Tao ZHANG
|
|
表 3 不同优化算法的实验测试结果( ${{\overline t } / {\overline p }}{\text{ < 0}}{\text{.25}}$) |
Tab.3 Comparison results of different optimization algorithms ( ${{\overline t } / {\overline p }}{\text{ < 0}}{\text{.25}}$) |
|
案例 | AGA | | IDSSA | | AAADE | | MOGWO | | ASSA | $t_{\rm{op }}/ {\rm{s}}$ | $C_{{\rm{max}}} $ | $\delta / {\text{%}} $ | $t_{\rm{op }}/ {\rm{s}}$ | $C_{{\rm{max}}} $ | $\delta / {\text{%}} $ | $t_{\rm{op }}/ {\rm{s}}$ | $C_{{\rm{max}}} $ | $\delta / {\text{%}}$ | $t_{\rm{op }}/ {\rm{s}}$ | $C_{{\rm{max}}} $ | $\delta / {\text{%}} $ | $t_{\rm{op }}/ {\rm{s}}$ | $C_{{\rm{max}}} $ | $\delta / {\text{%}} $ | EX110 | 1.33 | 126 | 0 | | 1.76 | 126 | 0 | | 0.70 | 126 | 0 | | 0.91 | 126 | 0 | | 0.36 | 126 | 0 | EX210 | 1.68 | 148 | 0 | 1.90 | 148 | 0 | 0.82 | 148 | 0 | 1.06 | 148 | 0 | 0.44 | 148 | 0 | EX320 | 1.38 | 145 | 0 | 1.78 | 148 | 2.07 | 0.84 | 145 | 0 | 1.57 | 145 | 0 | 0.46 | 145 | 0 | EX420 | 9.50 | 114 | 0 | 10.31 | 114 | 0 | 6.85 | 114 | 0 | 7.79 | 114 | 0 | 6.40 | 114 | 0 | EX530 | 1.32 | 99 | 0 | 1.12 | 99 | 0 | 0.53 | 99 | 0 | 1.09 | 99 | 0 | 0.19 | 99 | 0 | EX630 | 5.82 | 182 | 0 | 7.22 | 182 | 0 | 5.12 | 182 | 0 | 8.34 | 182 | 0 | 4.65 | 182 | 0 | EX740 | 4.99 | 137 | 0 | 5.24 | 137 | 0 | 3.12 | 137 | 0 | 3.85 | 137 | 0 | 2.65 | 137 | 0 | EX840 | 1.49 | 293 | 0 | 2.29 | 294 | 0.34 | 0.78 | 293 | 0 | 1.06 | 293 | 0 | 0.28 | 293 | 0 | EX940 | 8.27 | 175 | 0 | 11.50 | 175 | 0 | 6.51 | 175 | 0 | 12.24 | 175 | 0 | 6.12 | 175 | 0 | EX1040 | 33.25 | 240 | 0 | 37.28 | 240 | 0 | 24.98 | 240 | 0 | 43.53 | 240 | 0 | 24.49 | 240 | 0 | 平均值 | 6.9 | — | 0.0 | | 8.04 | — | 0.24 | | 5.03 | — | 0.0 | | 8.14 | — | 0.0 | | 4.6 | — | 0.0 |
|
|
|