自适应樽海鞘群算法求解考虑运输时间的柔性作业车间调度
|
牛昊一,吴维敏,章庭棋,沈微,张涛
|
Adaptive salp swarm algorithm for solving flexible job shop scheduling problem with transportation time
|
Hao-yi NIU,Wei-min WU,Ting-qi ZHANG,Wei SHEN,Tao ZHANG
|
|
表 2 不同优化算法的实验测试结果( ${{\overline t } / {\overline p }} > {\text{0}}{\text{.25}}$) |
Tab.2 Comparison results of different optimization algorithms ( ${{\overline t } / {\overline p }}{\text{ > 0}}{\text{.25}}$) |
|
案例 | AGA | | IDSSA | | AAADE | | MOGWO | | ASSA | $t_{\rm{op }}/ {\rm{s}} $ | ${C_{\max }} $ | $\delta / {\text{%}} $ | $t_{\rm{op }}/ {\rm{s}}$ | ${C_{\max }} $ | $\delta / {\text{%}} $ | $t_{\rm{op }}/ {\rm{s}}$ | ${C_{\max }} $ | $\delta / {\text{%}} $ | $t_{\rm{op }}/ {\rm{s}}$ | ${C_{\max }} $ | $\delta / {\text{%}} $ | $t_{\rm{op }}/ {\rm{s}}$ | ${C_{\max }} $ | $\delta / {\text{%}} $ | EX11 | 6.37 | 96 | 0 | | 7.78 | 97 | 1.04 | | 5.46 | 96 | 0 | | 8.83 | 96 | 0 | | 5.04 | 96 | 0 | EX21 | 19.97 | 102 | 0 | 15.21 | 104 | 1.96 | 13.63 | 102 | 0 | 21.00 | 103 | 0.98 | 13.27 | 102 | 0 | EX32 | 6.91 | 85 | 0 | 7.25 | 85 | 0 | 5.15 | 86 | 1.77 | 4.78 | 86 | 1.77 | 4.71 | 85 | 0 | EX42 | 28.85 | 88 | 0 | 31.78 | 88 | 0 | 26.55 | 88 | 0 | 35.19 | 88 | 0 | 26.03 | 88 | 0 | EX53 | 8.71 | 74 | 0 | 11.61 | 74 | 0 | 6.02 | 76 | 2.70 | 8.00 | 76 | 2.70 | 5.68 | 74 | 0 | EX63 | 17.16 | 104 | 0.97 | 23.01 | 107 | 3.89 | 15.63 | 103 | 0 | 23.67 | 104 | 0.97 | 15.11 | 103 | 0 | EX74 | 23.90 | 127 | 0 | 26.29 | 130 | 2.36 | 18.68 | 128 | 0.79 | 18.42 | 130 | 2.36 | 18.18 | 128 | 0.79 | EX84 | 18.75 | 163 | 0 | 23.15 | 165 | 1.23 | 15.79 | 163 | 0 | 17.46 | 170 | 4.29 | 15.23 | 163 | 0 | EX94 | 6.81 | 122 | 1.67 | 8.76 | 125 | 4.17 | 6.33 | 120 | 0 | 7.58 | 122 | 1.67 | 5.87 | 120 | 0 | EX104 | 14.74 | 159 | 0 | 18.13 | 165 | 3.77 | 12.04 | 159 | 0 | 19.79 | 160 | 0.63 | 11.50 | 159 | 0 | 平均值 | 15.22 | — | 0.26 | | 17.30 | — | 1.84 | | 12.53 | — | 0.53 | | 16.47 | — | 1.54 | | 12.06 | — | 0.08 |
|
|
|